Exercises

Optimization in Finance

Fall 2008

Sheet 3

Exercise 3.1

Define

$$Q = \begin{pmatrix} 3 & 1 \\ 1 & 4 \end{pmatrix} \text{ and } C = \{ x \in \mathbb{R}^2 \mid x^T Q x \le 19 \}$$

Clearly $x^* = (2,1) \notin C$. Compute a hyperplane separating x^* from C.

Hint: Recall the gradient.

Exercise 3.2

Proof the following

- 1. Given a closed, convex set $S \subseteq \mathbb{R}^n$ and a point $x^* \in \mathbb{R}^n$ with $x^* \notin S$. Show that there is a hyperplane $c^T x = \delta$ with $c^T s < \delta$ for any $s \in S$ and $c^T x^* > \delta$ (this is Theorem 3.8 without boundedness of S).
- 2. Let $S, R \subseteq \mathbb{R}^n$ be disjoint compact convex sets. Show that there is a hyperplane $c^T x = \delta$ with $c^T s < \delta$ and $c^T r > \delta$ for any $s \in S$ and $r \in R$.

Hint: You may use the argument from the lecture, that whenever $s^* \in S$, $r^* \in R$ attain the minimum distance of 2 convex disjoint sets S, R, then the hyperplane $c^T x = \delta$ through $\frac{s^* + r^*}{2}$, orthogonal to $s^* - r^*$ strictly separates S and R.

Exercise 3.3

Suppose you are given an oracle algorithm, which for a given polyhedron $P = \{x \mid Ax \le b\}$ gives you a feasible solution or asserts that there is none. Show that using a <u>single</u> call of this oracle one can obtain an optimum solution for the LP

$$\min\{Ax = b; x > \mathbf{0}\},\$$

assuming that the LP is feasible and bounded.

Hint: Use duality.

Theorem. (Strong Separation Theorem) Let C_1, C_2 be convex sets, such that C_1 is closed. Then there is a hyperplane $c^T x = \delta$, such that $c^T x \le \delta$ for $x \in C_1$ and $c^T x > \delta$ for $x \in C_2$.

Exercise 3.4 - Farkas Lemma

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$. We want to show that exactly one of the following 2 properties hold:

1.
$$\exists x \ge \mathbf{0} : Ax \le b$$

2.
$$\exists y > \mathbf{0} : y^T A > \mathbf{0}, y^T b < 0$$

Do the following:

- 1. Show that it is impossible that both properties hold together.
- 2. Suppose (1) does not hold. Show that then (2) must hold.

Hint: Let a_1, \ldots, a_m be the columns of A. Then falseness of property (1) is equivalent to

$$b \notin \text{cone}\{a_1, \dots, a_m, e_1, \dots, e_n\} = \{\lambda_1 a_1 + \dots + \lambda_m a_m + \mu_1 e_1 + \dots + \mu_n e_n \mid \lambda_1, \dots, \lambda_m, \mu_1, \dots, \mu_n \ge 0\}$$

Recall that cones are convex and apply the above Strong Separation Theorem.

Exercise 3.5 - Another proof for strong duality

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$. Suppose that the sets $P = \{x \in \mathbb{R}^n \mid Ax \le b, x \ge \mathbf{0}\}$ and $D = \{y \in \mathbb{R}^m \mid y^T A \ge c^T, y \ge \mathbf{0}\}$ are nonempty. Show that the system

$$Ax \leq b$$

$$y^{T}A \geq c^{T}$$

$$c^{T}x \geq y^{T}b$$

$$x \geq \mathbf{0}$$

$$y \geq \mathbf{0}$$

has a solution. Here you may use weak duality but not the strong duality theorem.

Hint: Choose $\delta := \max\{c^T x \mid Ax \leq b, x \geq \mathbf{0}\}$. Then apply Farkas Lemma to the system $Ax \leq b, x \geq \mathbf{0}$, $c^T x \geq \delta + \varepsilon$ for $\varepsilon > 0$.

Exercise 3.6

In a combinatorial exchange, both buyers and sellers can submit combinatorial bids. Bids are like in the multiple item case of combinatorial auctions, except that the λ_i^j values can be negative, as the prices p_j , representing selling instead of buying. Note that a single bid can be buying some items, while selling other items. Write an integer program that will maximize the surplus by the combinatorial exchange.