Thomas Rothvoß
Location: ELD120
Discussion: 2.06.10

Exercises

Approximation Algorithms

Spring 2010

Sheet 12

Announcement: Please note that there is no lecture on May 26 (I'm on a workshop). The next (and last) lecture/exercise is June 2.

Exercise 1

An undirected graph G = (V, E) is called *k-colorable* if there is a function $\chi : V \to \{1, ..., k\}$ such that for any edge $(i, j) \in E$ one has $\chi(i) \neq \chi(j)$.

i) Suppose that G is 3-colorable. Show that the vector program

$$v_i \cdot v_j \leq -\frac{1}{2} \quad \forall (i,j) \in E$$

 $v_i \cdot v_i = 1 \quad \forall i = 1, \dots, n$
 $v_i \in \mathbb{R}^n$

has a solution (n = |V|).

- ii) Let $v_1, \ldots, v_n \in \mathbb{Q}^n$ be a solution to the above system. For a parameter $t \in \mathbb{N}$ apply the following rounding scheme:
 - (1) Pick random vectors r_1, \ldots, r_t independently from the *n*-dimensional unit ball
 - (2) Define 2^t groups of vertices

$$R_{1} = \{i \in V \mid r_{1} \cdot v_{i} \geq 0, r_{2} \cdot v_{i} \geq 0, \dots, r_{t} \cdot v_{i} \geq 0\}$$

$$R_{1} = \{i \in V \mid r_{1} \cdot v_{i} < 0, r_{2} \cdot v_{i} \geq 0, \dots, r_{t} \cdot v_{i} \geq 0\}$$

$$\vdots$$

$$R_{2^{t}} = \{i \in V \mid r_{1} \cdot v_{i} < 0, r_{2} \cdot v_{i} < 0, \dots, r_{t} \cdot v_{i} < 0\}$$

(in other words, nodes i, j are in different groups if and only if v_i and v_j are separated by at least one of the t hyperplanes with normal vector r_1, \ldots, r_t .)

(3) Color vertices in R_c with color c.

Which upper bound on Pr[i and j get the same color] can you get for an edge $(i, j) \in E$?

- iii) For comparison: If you choose a color for each node i just randomly (and independently) from $1, \ldots, 2^t$, what is the probability that a given pair of nodes i and j gets the same color?
- iv) Suppose that the degree of G is upper bounded by Δ (i.e. $|\delta(v)| \le \Delta \, \forall v \in V$). Give a polynomial time algorithm that, with probability at least 1/2, needs at most $O(\log n) \cdot \Delta^{0.64}$ many colors. **Hint:** Run ii) with $t := \log_3(2\Delta)$ for $O(\log n)$ iterations until all nodes are feasibly colored.

Exercise 2

We are given a set $S = \{x_1, \ldots, x_n\}$ of n items and a set m triplets $T \subseteq S \times S \times S$. Each triplet consists of 3 distinct items. A total ordering of S is an ordering π , $x_{\pi(1)} \prec x_{\pi(2)} \prec \ldots \prec x_{\pi(n)}$ (here $x_i \prec x_j$ means that x_i appears before x_j in the ordering). Such an order *satisfies* a triplet $(x_i, x_j, x_k) \in T$ if either $x_i \prec x_j \prec x_k$ or $x_k \prec x_j \prec x_i$ holds. The problem is to find an ordering π that maximizes the number of satisfied triplets.

- i) Argue, why a random permutation satisfies $\frac{1}{3}$ of the triplets.
- ii) Suppose that all triplets can be satisfied. Show that then the following quadratic program has a solution:

$$(p_i - p_j)^2 \geq 1 \quad \forall i \neq j$$

$$(p_i - p_j)(p_k - p_j) \leq 0 \quad \forall (x_i, x_j, x_k) \in T$$

$$p_i \in \mathbb{R} \quad \forall i \in \{1, \dots, n\}$$

- iii) Relax this quadratic program to a vector program with variables $v_1, \ldots, v_n \in \mathbb{R}^n$.
- iv) Let v_1, \ldots, v_n be any solution to the vector program. Select a vector $r \in \mathbb{R}^n$ uniformly at random from the unit sphere. Consider the ordering obtained by sorting $r^T v_i$. Show that a triplet $(x_i, x_j, x_k) \in T$ is satisfied with probability $\geq 1/2$ by this ordering.

Hint: Look at the angle between $v_i - v_j$ and $v_k - v_j$.