Integer Points in Polyhedra

Due Date: May 21, 2009

Spring 2009 Assignment Sheet 11

Exercise 1 (Integer programming gaps)

Provided an algorithm to decide parametric integer programming, i.e., the sentences of the form " $\forall b \in Q/\mathbb{Z}^p \ \exists x \in \mathbb{Z}^n$: $Ax \leq b$ ", when p and n are fixed, describe an algorithm that, given an integral matrix A and an integral vector c, computes the maximum difference

$$\max\{c^{\mathsf{T}}x: Ax \le b\} - \max\{c^{\mathsf{T}}x: Ax \le b, x \text{ integral}\}$$

over all vectors *b*, for which the integer program is feasible, and runs in polynomial time if the number of variables *x* is fixed.

Exercise 2 (Integer programming infeasibility)

Show that a system $Ax \le b$ has no integral solution if and only if there is a subsystem $A'x \le b'$ of $Ax \le b$ with at most 2^n inequalities that has no integral solution (n is the number of variables).

Exercise 3 (Infinite lattice width)

Prove that a parametric polyhedron $P_b = \{x : Ax \le b\}$ has finite lattice width if and only if the polyhedron $P_0 = \{x : Ax \le 0\}$ has finite lattice width.