Integer Points in Polyhedra

Due Date: April 21, 2009

Spring 2009

Assignment Sheet 7

Exercise 1 (Minkowski sum)

Show that there is a unique bilinear operation $*: \mathcal{P}(\mathbb{R}^n) \times \mathcal{P}(\mathbb{R}^n) \to \mathcal{P}(\mathbb{R}^n)$ such that

$$[P] * [Q] = [P + Q]$$

for any two polyhedra P and Q in \mathbb{R}^n .

Exercise 2 (Polarity)

Show that there is a linear transformation $\mathcal{D}: \mathcal{P}\mathbb{R}^n \to \mathcal{P}\mathbb{R}^n$ such that

$$\mathcal{D}([P]) = [P^*]$$

for any non-empty polyhedron polyhedron P in \mathbb{R}^n , where P^* denotes the polar of P.

Exercise 3

Let $f_1, f_2 \in \mathcal{P}(\mathbb{R}^n)$ be linear combinations of indicator functions of poyhedral cones. Prove that $\mathcal{D}(f_1 f_2) = \mathcal{D}(f_1) * \mathcal{D}(f_2)$. Here $\mathcal{D}: \mathcal{P}(\mathbb{R}^n) \to \mathcal{D}(\mathbb{R}^n)$ is the linear transformation from Exercise 2, while $*: \mathcal{P}(\mathbb{R}^n) \times \mathcal{P}(\mathbb{R}^n) \to \mathcal{P}(\mathbb{R}^n)$ is the multiplication operation from Exercise 1.

Exercise 4

Let $\mathcal{P}_0(\mathbb{R}^n)$ denote the vectors space spanned by the indicators of all polyhedra containing a line. We saw that

$$[P] \equiv \sum_{v \in Vert(P)} [cone(P, v)] \pmod{\mathscr{P}_0(\mathbb{R}^n)}$$

holds for all simplices P in \mathbb{R}^n . Using this fact, show that the same is true for all polytopes in \mathbb{R}^n .

Exercise 5 (Gram-Brianchon theorem)

Let $P \subseteq \mathbb{R}^n$ be a polyhedron. We say that two points $x, y \in P$ are equivalent, if $\operatorname{cone}(P, x) = \operatorname{cone}(P, y)$. An equivalence class of points in P is just an open face $F \subseteq P$. For an $x \in F$, we denote $\operatorname{cone}(x)$ by $\operatorname{cone}(F)$. Prove that

$$[P] \equiv \sum_{F} (-1)^{\dim(F)} [\operatorname{cone}(P, F)],$$

where the sum is taken over all non-empty faces of P, including F = P.