Thomas Rothvoß
Location: ELD120
Discussion: 31.03.10

Exercises

Approximation Algorithms

Spring 2010

Sheet 5

Note: This is just <u>one</u> way, a solution could look like. We do not guarantee correctness. It is your task to find and report mistakes.

Exercise 1

Consider MULTI CONSTRAINT KNAPSACK where n objects with profits $p_i \in \mathbb{Q}_+$ and budget requirement $a_i^j \in [0,1]$ are given. Let

$$OPT = \max_{I \subseteq \{1, \dots, n\}} \left\{ \sum_{i \in I} p_i \mid \sum_{i \in I} a_i^j \le 1 \ \forall j = 1, \dots, k \right\}$$

(since after scaling we may assume that the available budgets are all 1). We consider the number k of budgets to be a fixed constant. Show that for any $\varepsilon > 0$ one can compute in time polynomial in n and $1/\varepsilon$ a solution $I \subseteq \{1, ..., n\}$ with profit $\sum_{i \in I} p_i \ge OPT$ which is *nearly feasible*, i.e. $\sum_{i \in I} a_i^j \le 1 + \varepsilon$ for all j = 1, ..., k.

Hints: Find a suitable rounding + dynamic programming.

Solution:

Suppose $\frac{1}{\varepsilon} \in \mathbb{Z}$. Round all a_i^j down to the nearest multiple of $\frac{\varepsilon}{n}$ and denote the new numbers with $\bar{a}_i^j \in \mathbb{Z} \frac{\varepsilon}{n}$. Let OPT' be the best value of the new MCK instance. Due to the rounding down $OPT' \geq OPT$.

For any $b_1,\ldots,b_k\in\{0,\frac{\varepsilon}{n},2\frac{\varepsilon}{n},\ldots,1\}$ consider table entries

$$A(m,b_1,\ldots,b_k) = \text{best profit from a subset of items } \{1,\ldots,m\} \text{ such that}$$

$$\text{budget of type } j \text{ is } \leq b_j \ \forall j=1,\ldots,k$$

$$= \max_{I\subseteq \{1,\ldots,m\}} \Big\{ \sum_{i\in I} p_i \ | \sum_{i\in I} a_i^j \leq b_j \ \forall j=1,\ldots,k \Big\}$$

Clearly the number of table entries is $O(n^{k+1}/\epsilon^k)$. We compute a single entry by

$$A(m,b_1,\ldots,b_k) = \max \left\{ A(m-1,b_1,\ldots,b_k), A(m-1,b_1-\bar{a}_m^1,\ldots,b_k-\bar{a}_m^k) + p_m \right\}$$

We can compute each entry in O(1). Finally the solution I leading to

$$OPT' = A(n, 1, \dots, 1)$$

can be easily reconstructed. It has profit $\sum_{i \in I} p_i = OPT' \ge OPT$. It might violate some budgets, but

$$\sum_{i \in I} a_i^j \le \sum_{i \in I} (\bar{a}_i^j + \frac{\varepsilon}{n}) \le \underbrace{\sum_{i \in I} \bar{a}_i^j}_{\le 1} + n \cdot \frac{\varepsilon}{n} \le 1 + \varepsilon$$

Exercise 2

For the BIN COVERING problem, we are given an instance $I = (a_1, ..., a_n)$ with items $a_i \in [0, 1]$ and aim at maximizing the number of bins, which are *covered* (that means the size of the assigned items is at least 1):

$$OPT = \max \left\{ k \mid \exists I_1 \dot{\cup} \dots \dot{\cup} I_k = \{1, \dots, n\} : \forall j : \sum_{i \in I_i} a_i \ge 1 \right\}$$

We assume that $a_i \ge \delta$, i = 1, ..., n for a constant $\delta > 0$. Give an asymptotic PTAS for this problem under the above assumption (i.e. a polynomial time algorithm that for any fixed $\varepsilon > 0$, covers at least $(1 - \varepsilon)OPT - O(1)$ bins).

Hint: Adapt the APTAS of Fernandez de la Vega & Lueker from the lecture. In the grouping, you should round *down* the item sizes (instead of rounding them up).

Solution:

We apply the following grouping strategy

- INPUT: Instance $I = (a_1, \dots, a_n), k \in \mathbb{N}$
- OUTPUT: Instance $I' = (a'_1, \dots, a'_n)$ with $a'_i \le a_i$ and $\le k$ different item sizes Suppose for simplicity $n/k \in \mathbb{Z}$.
 - (1) Sort $a_1 \le a_2 \le ... \le a_n$
 - (2) Partition items into k consecutive groups of $\lceil n/k \rceil$ items (the last group might have less items)
 - (3) Let a'_i be the size of the <u>smallest</u> item in *i*'s group

First of all, any solution for I' gives a solution to I with the same number of bins. We claim that the other way around

Claim:
$$OPT(I') > OPT(I) - \lceil n/k \rceil$$
.

<u>Proof:</u> To see this consider any solution to I. For every item in group j, we find an item of I' in group j+1 (which is at least as big). This way we again cover all bins that did not contain any item from the last group. But these are at most n/k many.

<u>Claim:</u> For an instance I' with $a_i \ge \delta$ and $1/\epsilon^2$ many different item sizes, one can find an optimum BIN COVERING solution in polynomial time (considering ϵ, δ as constant).

<u>Proof:</u> In the optimum solution w.l.o.g. no pattern contains more than $2/\delta$ items, since then one could split it into 2 bins, each containing $1/\delta$ items of size $\geq \delta$ each. Hence there are $O((1/\epsilon^2)^{1/\delta})$ many different patterns and $n^{O((1/\epsilon^2)^{1/\delta})}$ possible solutions that one has to check.

We consider the following algorithm

- 1. Choose $k := 1/\varepsilon^2$
- 2. Apply linear grouping to $I \rightarrow I'$
- 3. Find an optimum solution to I'

Assume $\varepsilon \leq \delta$. Cleary $OPT \geq \frac{\delta n}{2} \geq \frac{\varepsilon n}{2}$ (again since $a_i \geq \delta$ and in OPT never more than $2/\delta$ items are assigned to the same bin). Using the grouping we produce a solution of value

$$OPT(I') \ge OPT - \lceil \varepsilon^2 n \rceil = OPT - \lceil 2\varepsilon \cdot \underbrace{\frac{\varepsilon n}{2}}_{\le OPT} \rceil \ge (1 - 2\varepsilon)OPT - 1.$$