Thomas Rothvoß
Location: ELD120
Discussion: 31.03.10

Exercises

Approximation Algorithms

Spring 2010

Sheet 5

Exercise 1

Consider MULTI CONSTRAINT KNAPSACK where n objects with profits $p_i \in \mathbb{Q}_+$ and budget requirement $a_i^j \in [0,1]$ are given. Let

$$OPT = \max_{I \subseteq \{1, \dots, n\}} \left\{ \sum_{i \in I} p_i \mid \sum_{i \in I} a_i^j \le 1 \ \forall j = 1, \dots, k \right\}$$

(since after scaling we may assume that the available budgets are all 1). We consider the number k of budgets to be a fixed constant. Show that for any $\varepsilon > 0$ one can compute in time polynomial in n and $1/\varepsilon$ a solution $I \subseteq \{1, ..., n\}$ with profit $\sum_{i \in I} p_i \ge OPT$ which is *nearly feasible*, i.e. $\sum_{i \in I} a_i^j \le 1 + \varepsilon$ for all j = 1, ..., k.

Hints: Find a suitable rounding + dynamic programming.

Exercise 2

For the BIN COVERING problem, we are given an instance $I = (a_1, ..., a_n)$ with items $a_i \in [0, 1]$ and aim at maximizing the number of bins, which are *covered* (that means the size of the assigned items is at least 1):

$$OPT = \max \left\{ k \mid \exists I_1 \dot{\cup} \dots \dot{\cup} I_k = \{1, \dots, n\} : \forall j : \sum_{i \in I_i} a_i \ge 1 \right\}$$

We assume that $a_i \ge \delta$, i = 1, ..., n for a constant $\delta > 0$. Give an asymptotic PTAS for this problem under the above assumption (i.e. a polynomial time algorithm that for any fixed $\varepsilon > 0$, covers at least $(1 - \varepsilon)OPT - O(1)$ bins).

Hint: Adapt the APTAS of Fernandez de la Vega & Lueker from the lecture. In the grouping, you should round *down* the item sizes (instead of rounding them up).