Thomas Rothvoß
Location: ELD120
Discussion: 24.03.10

Exercises

Approximation Algorithms

Spring 2010

Sheet 4

Exercise 1

Consider again the MINCONGESTION problem, where a directed graph G = (V, E) with demand pairs (s_i, t_i) for i = 1, ..., k is given and one aims at finding s_i - t_i paths P_i that minimize the congestion $\max_{e \in E} |\{i : e \in P_i\}|$. Show that the algorithm presented in the lecture gives a O(1)-approximation (with high probability) if $k \ge (\log_2 |E|) \cdot |E|$ (and $s_i \ne t_i$ for all i = 1, ..., k).

Hint: Which lower bound on the fractional congestion from the linear program do you obtain using the additional assumption $k \ge (\log_2 |E|) \cdot |E|$?

Exercise 2

Suppose we have 3 machines and n jobs. If we run job j on machine $i \in \{1,2,3\}$ this takes a *processing time* of $p_{ij} \in \mathbb{Q}_+$. The MINIMUMMAKESPAN problem is to find a way to assign the jobs to machines such that the load of the highest loaded machine (the *makespan*) is minimized. Formally

$$OPT = \min_{J_1 \cup J_2 \cup J_3 = \{1, ..., n\}} \left\{ \max_{i=1, ..., 3} \left\{ \sum_{j \in J_i} p_{ij} \right\} \right\}$$

Design an FPTAS for this problem (and prove an approximation guarantee of $1 + \varepsilon$).

Hint: Similar to the KNAPSACK FPTAS it is a good idea to first round the running times in a suitable way. Then apply dynamic programming.