Thomas Rothvoß Location: ELD120 **Discussion: 17.03.10**

Exercises

Approximation Algorithms

Spring 2010

Sheet 3

Note: This is just one way, a solution could look like. We do not guarantee correctness. It is your task to find and report mistakes.

Exercise 1

Consider the k-SET COVERING problem: Given a family of sets $S_1, \ldots, S_m \subseteq U$ of cardinality $|S_i| \le k$ with cost $c(S_i)$, find a subset of these sets that minimize the cost, while each element has to be covered at least once. Recall the linear programming relaxation

$$\min \sum_{i=1}^{m} c(S_i) \cdot x_i \qquad (LP)$$

$$\sum_{i:j \in S_i} x_i \geq 1 \quad \forall j \in U$$

$$x_i \geq 0 \quad \forall i$$

where x_i indicates, whether to take set S_i .

- i) Let x^* be an optimum **basic** solution for (LP). Prove that there is an i with $x_i^* \ge \frac{1}{k}$.
- ii) Consider the following *iterative rounding algorithm*:
 - (1) WHILE $U \neq \emptyset$ DO
 - (2) Compute an optimum basic solution x^*

 - (3) Choose i with x_i* ≥ 1/k
 (4) Buy set S_i, delete elements in S_i from the instance
 - (5) Output bought sets

Prove that this algorithm gives a *k*-approximation.

Hint: How much does the value of the optimum fractional solution decrease in each iteration compared to the bought set?

Solution:

- i) Let x^* be a basic solution of (LP). Apart from the non-negativity, the LP has n = |U| constraints (one for each element). From the lecture we know that $|\{i \mid x_i^* > 0\}| \le n$. On the other hand, since each set covers at most k elements, we must have $\sum_{i=1}^m x_i^* \ge \frac{n}{k}$. Hence the average value x_i^* of all i with $x_i^* > 0$ must be at least $\frac{n/k}{n} = \frac{1}{k}$. Especially the highest value must be $\ge \frac{1}{k}$.
- ii) Consider the first step and let x^* be the fractional solution. For buying S_i we pay $c(S_i)$. As new fractional solution we define $x'_j := x^*_j$ for $j \neq i$ and $x'_i := 0$. x' is in fact feasible. After reindexing let S^1, \ldots, S^ℓ be the edges, which are chosen by the algorithm. Let OPT_f^t be the value of the optimum fractional solution at the beginning of the ith step (and $OPT_f^{\ell+1} = 0$). Then

$$APX = \sum_{t=1}^{\ell} c(S^t)$$

Furthermore

$$OPT_f = OPT_f^1 = \sum_{t=1}^{\ell} \underbrace{(OPT_f^t - OPT_f^{t+1})}_{\geq \frac{1}{k}c(S^t)} \geq \frac{1}{k} \sum_{t=1}^{\ell} c(S^t) = \frac{1}{k}APX$$

Hence $APX \leq k \cdot OPT_f$.

Exercise 2

For the STEINER TREE problem, we are given an undirected weighted graph G = (V, E) with a cost function $c : E \to \mathbb{Q}_+$ and a set of terminals $R \subseteq V$. It is the goal to find a tree T that connects all terminals. A natural linear programming relaxation is

$$\min \sum_{e \in E} c_e x_e \qquad (LP)$$

$$\sum_{e \in \delta(S)} x_e \geq 1 \quad \forall S \subseteq V : 1 \leq |S \cap R| < |R|$$

$$x_e > 0 \quad \forall e \in E$$

Here $\delta(S) = \{\{u,v\} \in E \mid u \in S, v \notin S\}$ are the edges, crossing S. Show that one can compute an optimum fractional solution for (LP) in polynomial time (to be precise: Show that the LP can be solved in time polynomial in n = |V| and the encoding length $\langle c \rangle$ of c).

Hint: Use the Ellipsoid method from the lecture. Recall that the s-t MINCUT problem is polynomial time solvable: Given a graph G = (V, E), nodes $s, t \in V$ and capacities $w : E \to \mathbb{Q}_+$, compute an s-t cut $S \subseteq V$ with $s \in S, t \notin S$ that minimizes $\sum_{e \in \delta(S)} w(e)$.

Solution:

We want to apply the Ellipsoid algorithm (see the Theorem from the lecture). First of all the dimension of the (LP) is $m = |E| \le \binom{n}{2} \le n^2$. Each left hand side of a constraint is a 0/1-vector with $\le m$ entries. Hence the encoding length of such a constraint is $O(m) = O(n^2)$. Hence $\varphi = \langle c \rangle + O(n^2)$ is a feasible choice. We next consider the separation problem:

Let $y \in \mathbb{Q}^E$ be a given vector. We check first if there is an i with $y_i < 0$. If yes, return e_i since $y_i = e_i^T y < 0 \le e_i^T x = x_i$ for every feasible x. Next, we want to find the set $S \subseteq V$ that minimizes $\sum_{e \in \delta(S)} y_e$. But

$$\min \left\{ \sum_{e \in \delta(S)} x_e \mid S \subseteq V : 1 \le |S \cap R| < |R| \right\}$$

$$= \min_{s,t \in R} \left\{ \min_{S \subseteq V, s \in S, t \notin S} \left\{ \sum_{e \in \delta(S)} y(e) \right\} \right\}$$

$$= \min_{s,t \in R} \left\{ \text{value of } s - t \text{ MinCut with capacities } y(e) \right\}$$

The set S attaining this minimum can be computed in time $poly(\langle y \rangle, n) = poly(\varphi)$. If $\sum_{e \in \delta(S)} y(e) \ge 1$ then y is feasible. Otherwise the characteristic vector of $\sum_{e \in \delta(S)} y(e)$ is a feasible output for the separation oracle since

$$\sum_{e \in \delta(S)} y(e) < 1$$

with $1 \le |R \cap S| < |R|$ yields a violated inequality.