Integer Points in Polyhedra

Due Date: March 17, 2009

Spring 2009

Assignment Sheet 3

Exercise 1 (Well-ordered basis)

Let $b_1, b_2 \in \mathbb{Z}^2$ be a basis of two-dimensional lattice. Show that we can transform this basis, in constant time, into a well-ordered basis, i.e., basis b'_1, b'_2 satisfying

$$||b_1'|| \le ||b_2' - b_1'|| \le ||b_2'|| \le ||b_2' + b_1'||.$$

Exercise 2 (Running time of the generalized Gauss algorithm)

Prove that the generalized Gauss reduction algorithm in \mathbb{R}^2 runs in polynomial time.

Exercise 3 (Closest vector in \mathbb{R}^2)

Describe an efficient algorithm that, provided a lattice $\Lambda \subseteq \mathbb{R}^2$ and a vector $v \in \mathbb{R}^2$, finds a lattice vector $z \in \Lambda$ with ||z - v|| as small as possible.

Exercise 4 (Integral points in fundamental parallelepiped)

Let $b_1, b_2, ..., b_n$ be linearly independent integral vectors in \mathbb{R}^n . Show that the fundamental parallelepiped

$$P(b_1, b_2, ..., b_n) = \left\{ \sum_{i=1}^n \lambda_i b_i : 0 \le \lambda_i < 1, i = 1, 2, ..., n \right\}$$

contains exactly $det(b_1, b_2, ..., b_n)$ integral vectors.

Exercise 5 (Integral points in ellipsoids)

Given an algorithm computing the shortest lattice vector wrt $\|\cdot\|_2$, describe an algorithm to find an integral point in a given ellipsoid $\|Ax\|_2 \le b$.