Thomas Rothvoß
Location: ELD120
Discussion: 10.03.10

Exercises

Approximation Algorithms

Spring 2010

Sheet 2

Exercise 1

Give a family of instances, where Christophides algorithm for TSP gives a solution whose approximation guarantee indeed tends to $\frac{3}{2}$.

Exercise 2

For a parameter $k \in \mathbb{N}$, we consider the following SET COVER instance: Choose elements $U := \mathbb{Z}_2^k \setminus \{(0, \dots, 0)\}$. For each vector $z \in \mathbb{Z}_2^k$, we define a set $S_z := \{y \in U \mid z \cdot y \equiv_2 1\}$ where $z \cdot y \equiv_2 \sum_{i=1}^k z_i y_i$ is the standard scalar product mod 2. Hence we have $n := |U| = 2^k - 1$ elements and 2^k sets. All sets have unit cost.

Example: For
$$k=2$$
 we have elements $U=\{(1,0),(0,1),(1,1)\}$ and sets $S_{(0,0)}=\emptyset, S_{(0,1)}=\{(0,1),(1,1)\}, S_{(1,0)}=\{(1,0),(1,1)\}, S_{(1,1)}=\{(1,0),(0,1)\}.$

Show that $OPT \ge k$ and $OPT_f \le 2$ (hence the integrality gap is $\Omega(\log n)$).

Exercise 3

The SET PACKING problem is as follows: Given a family of sets $S_1, \ldots, S_m \subseteq U$ of cardinality $|S_i| = 3$ with *profits* $c(S_i)$, find a subset of these sets that maximizes the profit, while each element is covered at most once. Consider a straightforward integer linear programming formulation

$$\max \sum_{i=1}^{m} c(S_i) \cdot x_i \qquad (ILP)$$

$$\sum_{i:j \in S_i} x_i \leq 1 \quad \forall j \in U$$

$$x_i \in \{0,1\} \quad \forall i$$

where x_i indicates, whether to take set S_i . Let OPT be its optimum value and OPT_f be the optimum value of its fractional relaxation. Prove that $\frac{OPT_f}{OPT} \leq O(1)$ (for a big enough constant).

Hint: A suitable randomized rounding should do the job.