Thomas Rothvoß
Location: ELD120
Discussion: 3.03.10

Exercises

Approximation Algorithms

Spring 2010

Sheet 1

Note: This is just <u>one</u> way, a solution could look like. We do not guarantee correctness. It is your task to find and report mistakes.

Exercise 1

Give family of undirected graphs G = (V, E) and terminals R, such that asymptotically (i.e. for $|V| \to \infty$) the Minimum spanning tree is a factor 2 more expensive then the cheapest Steiner tree.

Proof. Consider a star graph with n terminals r_1, \ldots, r_n and a center v connected with unit cost edges. The cheapest Steiner tree costs OPT = n. On the other hand the Minimum Spanning Tree costs 2n - 2. Hence the gap is $\frac{2n-2}{n} \to 2$.

Exercise 2

For the STEINER TREE problem, we are given an undirected weighted graph G = (V, E) and a set of terminals $R \subseteq V$. It is the goal to find a tree T that connects all terminals. There exists a constant $c_0 > 1$ such that the following gap version of the 3-SET COVER problem is **NP**-hard:

Given sets $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$ with $|S_i| = 3$ and a parameter $k \in \mathbb{N}$, distinguish

- YES: There is a cover with $\leq k$ sets
- No: There is no cover with $\leq c_0 \cdot k$ sets

Show that STEINER TREE is **APX**-hard, i.e. show that there is a constant $c_1 > 1$ such that finding a c_1 -approximate STEINER TREE is **NP**-hard.

Hint: Construct a STEINER TREE instance with 1 terminal for each element, 1 Steiner node per set and 1 special root terminal (unit cost edges should suffice).

Proof. Let $U = \{1, ..., n\}$ be the elements. We create a graph G = (V, E) with terminals $U \cup \{r\}$ and one potential Steiner node v_i for each set S_i . We add edges (r, v_i) and (j, v_i) if $j \in S_i$. All edges have unit cost. Let OPT be the cost of the optimum Steiner tree. Then

Claim: There is a cover with $\leq k$ sets $\Rightarrow OPT \leq n + k$

Let $I \subseteq \{1, ..., m\}$ be the index set of $|I| \le k$ sets with $\bigcup_{i \in I} S_i = U$. Choose a Steiner Tree with edges (r, v_i) for each $i \in I$. Then attach for each terminal j an edge (j, v_i) for one v_i with $j \in S_i$ (recall that maybe j is covered several times). The cost of the tree is $|U| + |I| \le n + k$.

<u>Claim:</u> $OPT \le n + c_0 \cdot k \Rightarrow$ there is a cover of size $c_0 \cdot k$.

Suppose we are given a Steiner tree T of cost $c(T) \le n+k$. In principle T might contain an edge (j,j') of cost 2 between two terminals. But then we can replace it by 2 edges $(j,v_i),(v_i,r)$ for some i with $j \in S_i$ (or with $(j',v_i),(v_i,r)$) without disconnecting terminals and without increasing the cost. Now we may assume that every terminal j is connected to the root using a path of the form $j \to v_i \to r$. Let I be the index set of all i with $(v_i,r) \in T$, then $|I| \le n + c_0 \cdot k - n = c_0 k$. Hence we found a set cover of size $\le c_0 k$.

We conclude

- $OPT_{SC} \le k \Rightarrow OPT_{ST} \le n + k$
- $OPT_{SC} > c_0 k \Rightarrow OPT_{ST} > n + c_0 k$

But

$$\frac{n+c_0k}{n+k} \ge \frac{3k+c_0k}{3k+k} = \frac{3+c_0}{4} =: c_1 > 1$$

using that $n \le 3k$. If we had a STEINER TREE approximation algorithm with a ratio of $< c_1$ then we could solve the NP-hard Set Cover instance (and hence any problem in NP).

Exercise 3

Consider the MAXIMUM COVERAGE problem: Given sets S_1, \ldots, S_m over a universe of elements $U = \{1, \ldots, n\} = \bigcup_{i=1}^m S_i$ and a parameter $k \in \mathbb{N}$. Choose k sets that cover as many elements as possible, i.e.

$$OPT := \max \left\{ |\bigcup_{i \in I} S_i| : |I| = k \right\}$$

Show that a straightforward greedy algorithm gives a $\frac{e}{e-1} \approx 1.58$ -approximation.

Solution:

We consider a greedy algorithm, where in any iteration we choose that set, which covers the largest amount of new elements. Let n_i be the number of elements which are covered in the *i*th iteration. Suppose we are in the *i*th iteration, then there are still the $\geq OPT - \sum_{j=1}^{i-1} n_i$ many elements that the optimum solution manages to cover with k sets. Hence

$$n_i \ge \frac{OPT - \sum_{j=1}^{i-1} n_j}{k}$$

Thus

$$\sum_{j=1}^{i} n_j \geq \sum_{j=1}^{i-1} n_j + \frac{OPT - \sum_{j=1}^{i-1} n_j}{k} = \frac{OPT}{k} + \left(1 - \frac{1}{k}\right) \sum_{j=1}^{i-1} n_j$$

Iterating this we obtain

$$\sum_{j=1}^{k} n_k \geq \frac{OPT}{k} \cdot \left[\sum_{i=0}^{k-1} \left(1 - \frac{1}{k}\right)^i\right] \stackrel{geom.series:}{\underset{k=0}{\sum_{i=0}^{k-1} x^i = \frac{1-x^k}{1-x}}} \frac{OPT}{k} \cdot \frac{1 - \left(1 - \frac{1}{k}\right)^k}{1 - \left(1 - \frac{1}{k}\right)} \geq \left(1 - \frac{1}{e}\right) \cdot OPT$$