Thomas Rothvoß
Location: ELD120
Discussion: 3.03.10

Exercises

Approximation Algorithms

Spring 2010

Sheet 1

Exercise 1

Give family of undirected graphs G = (V, E) and terminals R, such that asymptotically (i.e. for $|V| \rightarrow \infty$) the Minimum spanning tree is a factor 2 more expensive then the cheapest Steiner tree.

Exercise 2

For the STEINER TREE problem, we are given an undirected weighted graph G = (V, E) and a set of terminals $R \subseteq V$. It is the goal to find a tree T that connects all terminals. There exists a constant $c_0 > 1$ such that the following gap version of the 3-SET COVER problem is **NP**-hard:

Given sets $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$ with $|S_i| = 3$ and a parameter $k \in \mathbb{N}$, distinguish

- YES: There is a cover with $\leq k$ sets
- No: There is no cover with $\leq c \cdot k$ sets

Show that STEINER TREE is **APX**-hard, i.e. show that there is a constant $c_1 > 1$ such that finding a c_1 -approximate STEINER TREE is **NP**-hard.

Hint: Construct a STEINER TREE instance with 1 terminal for each element, 1 Steiner node per set and 1 special root terminal (unit cost edges should suffice).

Exercise 3

Consider the MAXIMUM COVERAGE problem: Given sets S_1, \ldots, S_m over a universe of elements $U = \{1, \ldots, n\} = \bigcup_{i=1}^m S_i$ and a parameter $k \in \mathbb{N}$. Choose k sets that cover as many elements as possible, i.e.

$$OPT := \max \left\{ |\bigcup_{i \in I} S_i| : |I| = k \right\}$$

Show that a straightforward greedy algorithm gives a $\frac{e}{e-1} \approx 1.58$ -approximation.