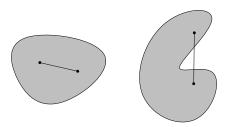
PART 3 CONVEX OPTIMIZATION

Convex sets and functions

Convex set

A set $C \subseteq \mathbb{R}^n$ is convex if for each $x, y \in C$ and $0 \le \lambda \le 1$, one has $\lambda x + (1 - \lambda)y \in C$.



Example

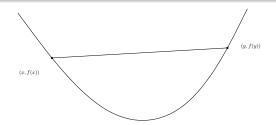
Set on the left is convex, on the right non-convex

Convex functions

Convex function

 $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is convex function, if domain of f is convex and for each $x, y \in \text{domain}(f)$ and $0 \le \lambda \le 1$ one has

$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y)$$



Example

 $\|\cdot\|$ (any norm) is a convex function, since $\|\alpha \cdot x\| = |\alpha| \cdot \|x\|$ and $\|x+y\| \le \|x\| + \|y\|$. Thus $\|\lambda x + (1-\lambda)y\| \le \lambda \|x\| + (1-\lambda)\|y\|$.

Some operations preserving convexity

Lemma 3.1

If $f_1, ..., f_n : \mathbb{R}^n \longrightarrow \mathbb{R}$ are convex functions over the same domain and $w_1, ..., w_n \ge 0$ are non-negative weights, then $\sum_{i=1}^n w_i f_i$ is convex function.

Lemma 3.2

If $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is convex $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$, then $g: \mathbb{R}^m \longrightarrow \mathbb{R}$ with g(x) = f(Ax + b) is convex.

Reminder

A symmetric matrix $Q \in \mathbb{R}^{n \times n}$ is called positive semi-definite if $x^T Qx \ge 0$ for each $x \in \mathbb{R}^n$.

Theorem 3.3

Let $Q \in \mathbb{R}^{n \times n}$ be a symmetric matrix. The following are equivalent.

- i) Q is positive definite.
- ii) All Eigenvalues of Q real and non-negative
- iii) $Q = U^T diag(\lambda_1, ..., \lambda_n) U$, where $U \in \mathbb{R}^{n \times n}$ is an orthogonal matrix and $\lambda_i \in \mathbb{R}_{\geq 0}$ for i = 1, ..., n.

Lemma 3.4

Let $Q \in \mathbb{R}^{n \times n}$ be symmetric and positive semidefinite, then $f(x) = x^T Qx$ is convex.

Sublevel sets

Definition C_{α}

 $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ convex and $\alpha \in \mathbb{R}$, $C_\alpha = \{x \in \mathbb{R}^n : f(x) \le \alpha\}$ is α -sublevel set of f.

Lemma 3.5

If f is convex, then C_{α} *is a convex set for each* $\alpha \in \mathbb{R}$.

Epigraph

 $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ convex, **epi** $(f) = \{(x, t) : x \in \text{domain}(f), f(x) \le t\}$ is **epigraph** of f.

Lemma 3.6

f is convex if and only if epi(f) is convex set.

Convex optimization problem

Convex optimization problem

A convex optimization problem is of the form

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$ for $i = 1, ..., m$,

where f_i , i = 0, ..., m are convex functions.

Corollary 3.7

 $Q \in \mathbb{R}^{n \times n}$ positive semidefinite, $c \in \mathbb{R}^n$ $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Convex quadratic program

$$\min x^T Q x + c^T x
A x = b
x \ge 0,$$

is convex optimization problem.

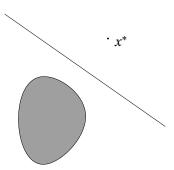
Binary search for minimum

- Search smallest $\beta \in \mathbb{R}$ such that convex set $C_{\beta} = \{x \in \mathbb{R}^n : f_0(x) \le \beta, f_1(x) \le b_1, \dots, f_m(x) \le b_m\}$ is non-empty.
- Keep upper bound U and lower bound L
- ► **Test**: Whether $C_{(L+U)/2} = \emptyset$. If yes, then L := (L+U)/2. If no, then U := (L+U)/2.
- ► After $O(\log((U-L)/\varepsilon)$ many steps, one obtains a value of distance $\leq \varepsilon$ from the optimum value.

Separating hyperplane

Theorem 3.8

If $S \subseteq \mathbb{R}^n$ is closed and convex and $x^* \notin S$, then there exists a hyperplane $c^T x = \delta$ such that $c^T s < \delta$ for each $s \in S$ and $c^T x^* > \delta$.



Balls and ellipsoids

The unit ball is the set $B = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$. An ellipsoid E(A, b) is the image of the unit ball under a affine map $t : \mathbb{R}^n \to \mathbb{R}^n$ with t(x) = Ax + b, where $A \in \mathbb{R}^{n \times n}$ is an invertible matrix and $b \in \mathbb{R}^n$ is a vector.

Clearly

$$E(A, b) = \{x \in \mathbb{R}^n \mid ||A^{-1}x - A^{-1}b|| \le 1\}.$$
 (14)

Exercise

Consider the mapping $t(x) = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} x(1) \\ x(2) \end{pmatrix}$. Draw the ellipsoid which is defined by t. What are the axes of the ellipsoid?

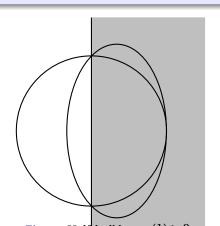
Volume of unit ball

The volume of the unit ball is $V_n \sim \frac{1}{\pi n} \left(\frac{2 e \pi}{n}\right)^{n/2}$. Volume of ellipsoid E(A, b) is equal to $|\det(A)| \cdot V_n$.

Lemma 3.9 (Half-Ball Lemma)

The half-ball $H = \{x \in \mathbb{R}^n \mid ||x|| \le 1, x(1) \ge 0\}$ is contained in the ellipsoid

$$E = \left\{ x \in \mathbb{R}^n \mid \left(\frac{n+1}{n} \right)^2 \left(x(1) - \frac{1}{n+1} \right)^2 + \frac{n^2 - 1}{n^2} \sum_{i=2}^n x(i)^2 \le 1 \right\}$$
 (15)



Proof

Let *x* be contained in the unit ball, i.e., $||x|| \le 1$ and suppose further that $0 \le x(1)$ holds. We need to show that

$$\left(\frac{n+1}{n}\right)^2 \left(x(1) - \frac{1}{n+1}\right)^2 + \frac{n^2 - 1}{n^2} \sum_{i=2}^n x(i)^2 \le 1 \tag{16}$$

holds. Since $\sum_{i=2}^{n} x(i)^2 \le 1 - x(1)^2$ holds we have

$$\left(\frac{n+1}{n}\right)^{2} \left(x(1) - \frac{1}{n+1}\right)^{2} + \frac{n^{2} - 1}{n^{2}} \sum_{i=2}^{n} x(i)^{2}$$

$$\leq \left(\frac{n+1}{n}\right)^{2} \left(x(1) - \frac{1}{n+1}\right)^{2} + \frac{n^{2} - 1}{n^{2}} (1 - x(1)^{2})$$
(17)

This shows that (16) holds if x is contained in the half-ball and x(1) = 0 or x(1) = 1.

Proof cont.

Now consider the right-hand-side of (17) as a function of x(1), i.e., consider

$$f(x(1)) = \left(\frac{n+1}{n}\right)^2 \left(x(1) - \frac{1}{n+1}\right)^2 + \frac{n^2 - 1}{n^2} (1 - x(1)^2). \tag{18}$$

The first derivative is

$$f'(x(1)) = 2 \cdot \left(\frac{n+1}{n}\right)^2 \left(x(1) - \frac{1}{n+1}\right) - 2 \cdot \frac{n^2 - 1}{n^2} x(1). \tag{19}$$

We have f'(0) < 0 and since both f(0) = 1 and f(1) = 1, we have $f(x(1)) \le 1$ for all $0 \le x(1) \le 1$ and the assertion follows.

Corollary 3.10

The half-ball $\{x \in \mathbb{R}^n \mid x(1) \ge 0, \|x\| \le 1\}$ is contained in an ellipsoid E, whose volume is bounded by $e^{-\frac{1}{2(n+1)}} \cdot V_n$.

Ellipsoids: Convenient notation

An ellipsoid $\mathscr{E}(A, a)$ is the set $\mathscr{E}(A, a) = \{x \in \mathbb{R}^n \mid (x - a)^T A^{-1} (x - a) \le 1\}$, where $A \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix and $a \in \mathbb{R}^n$ is a vector. Half-ellipsoid: $\mathscr{E}(A, a) \cap (c^T x \le c^T a)$ where $c \in \mathbb{R}^n$

Proof of the correctness of next formula can be found in [?].

Lemma 3.11 (Half-Ellipsoid-Theorem)

The half-ellipsoid $\mathscr{E}(A,b) \cap (c^T x \leq c^T a)$ is contained in the ellipsoid $\mathscr{E}'(A',a')$ and one has $\operatorname{vol}(\mathscr{E}')/\operatorname{vol}(\mathscr{E}) \leq e^{-1/(2n)}$.

$S \subseteq \mathbb{R}^n$ convex compact set. Suppose the following:

- I) We have an ellipsoid \mathcal{E}_{init} which contains S.
- II) We have separation oracle for *S*

Ellipsoid method decides whether vol(S) < L or computes a point $x^* \in S$

Ellipsoid method

- a) (Initialize): Set $\mathscr{E}(A, a) := \mathscr{E}_{init}$
- b) If $vol(\mathscr{E}(A, a)) < L$, then stop.
- c) If $a \in S$, then assert $S \neq \emptyset$ and stop
- d) Otherwise, compute inequality $c^T x \le \beta$ which is valid for S and satisfies $c^T a > \beta$ and replace $\mathscr{E}(A, a)$ by $\mathscr{E}(A', a)$ computed with formula (??) and goto step c).

Theorem 3.12

The ellipsoid method computes a point in S or asserts that vol(S) < L. The number of iterations is bounded by $2 \cdot n \ln(vol(\mathcal{E}_{init})/L)$.