Chapter 2 Convex sets

A polyhedron $P \subseteq \mathbb{R}^n$ is a set of the form $P = \{x \in \mathbb{R}^n : Ax \leqslant b\}$ for some $A \in \mathbb{R}^{m \times n}$ and some $b \in \mathbb{R}^m$. The set of feasible solutions of a linear program $\max\{c^Tx : Ax \leqslant b\}$ is a polyhedron. Polyhedra are convex sets. Convex sets are the main objects of study of this chapter.

Linear, affine, conic and convex hulls

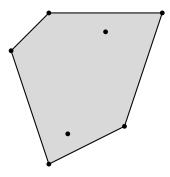


Fig. 2.1 The convex hull of 7 points in \mathbb{R}^2 .

Let $X \subseteq \mathbb{R}^n$ be a set of *n*-dimensional vectors. The *linear hull, affine hull, conic hull* and *convex hull* of X are defined as follows.

lin.hull(X) =
$$\{\lambda_{1}x_{1} + \dots + \lambda_{t}x_{t} \mid t \geq 0, x_{1}, \dots, x_{t} \in X, \lambda_{1}, \dots, \lambda_{t} \in \mathbb{R}\}$$
 (2.1)
affine.hull(X) = $\{\lambda_{1}x_{1} + \dots + \lambda_{t}x_{t} \mid t \geq 1,$ (2.2)

$$x_{1}, \dots, x_{t} \in X, \sum_{i=1}^{t} \lambda_{i} = 1, \lambda_{1}, \dots, \lambda_{t} \in \mathbb{R}\}$$

$$cone(X) = \{\lambda_{1}x_{1} + \dots + \lambda_{t}x_{t} \mid t \geq 0,$$
 (2.3)

$$x_{1}, \dots, x_{t} \in X, \lambda_{1}, \dots, \lambda_{t} \in \mathbb{R}_{\geq 0}\}$$

$$conv(X) = \{\lambda_{1}x_{1} + \dots + \lambda_{t}x_{t} \mid t \geq 1,$$
 (2.4)

$$x_{1}, \dots, x_{t} \in X, \sum_{i=1}^{t} \lambda_{i} = 1, \lambda_{1}, \dots, \lambda_{t} \in \mathbb{R}_{\geq 0}\}$$

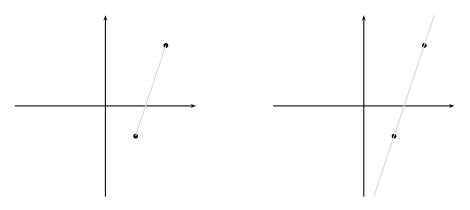


Fig. 2.2 Two points with their convex hull on the left and their affine hull on the right.

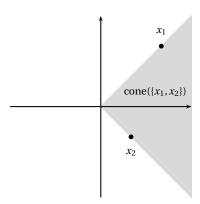


Fig. 2.3 Two points with their conic hull

Proposition 1. Let $X \subseteq \mathbb{R}^n$ and $x_0 \in X$. One has

affine.hull(
$$X$$
) = x_0 + lin.hull($X - x_0$),

where for $u \in \mathbb{R}^n$ and $V \subseteq \mathbb{R}^n$, u + V denotes the set $u + V = \{u + v \mid v \in V\}$.

Proof. We first show that each $x \in$ affine.hull(X) is also an element of the set $x_0 +$ lin.hull($X - x_0$) and then we show that each point $x \in x_0 +$ lin.hull($X - x_0$) is also an element of affine.hull(X).

Let $x \in$ affine.hull(X),i.e., there exists a natural number $t \geqslant 1$ and $\lambda_1, \dots, \lambda_t \in \mathbb{R}$, with $x = \lambda_1 x_1 + \dots + \lambda_t x_t$ and $\sum_{i=1}^t \lambda_i = 1$. Now

$$x = x_0 - x_0 + \lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_t x_t$$

= $x_0 - \lambda_1 x_0 - \dots - \lambda_t x_0 + \lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_t x_t$
= $x_0 + \lambda_1 (x_1 - x_0) + \dots + \lambda_t (x_t - x_0),$

which shows that $x \in x_0 + \text{lin.hull}(X - x_0)$.

Suppose now that $x \in x_0 + \text{lin.hull}(X - x_0)$. Then there exist $\lambda_1, \dots, \lambda_t \in \mathbb{R}$ with $x = x_0 + \lambda_1(x_1 - x_0) + \dots + \lambda_t(x_t - x_0)$. With $\lambda_0 = 1 - \sum_{i=1}^t \lambda_i$ one has $\sum_{i=0}^t \lambda_i = 1$ and

$$x = x_0 + \lambda_1(x_1 - x_0) + \dots + \lambda_t(x_t - x_0)$$

= $\lambda_0 x_0 + \dots + \lambda_t x_t$

and thus that $x \in affine.hull(X)$.

Definition 1. The convex hull of two distinct points $u \neq v \in \mathbb{R}^n$ is called a *line segment* and is denoted by \overline{uv} .

Definition 2. A set $K \subseteq \mathbb{R}^n$ is *convex* if for each $u \neq v$, the line-segment \overline{uv} is contained in K, $\overline{uv} \subseteq K$.

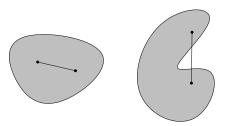


Fig. 2.4 The set on the left is convex, the set on the right is non-convex.

In other words, a set $K \subseteq \mathbb{R}^n$ is convex, if for each $u, v \in K$ and $\lambda \in [0,1]$ the point $\lambda u + (1 - \lambda)v$ is also contained in K.

Theorem 1. Let $X \subseteq \mathbb{R}^n$ be a set of points. The convex hull, conv(X), of X is convex.

Proof. Let u and v be points in conv(X). This means that there exists a natural number $t\geqslant 1$, real numbers $\alpha_i,\beta_i\geqslant 0$, and points $x_i\in X$, $i=1,\ldots,t$ with $\sum_{i=1}^t\alpha_i=\sum_{i=1}^t\beta_i=1$ with $u=\sum_{i=1}^t\alpha_ix_i$ and $v=\sum_{i=1}^t\beta_ix_i$. For $\lambda\in[0,1]$ one has $\lambda\alpha_i+(1-\lambda)\beta_i\geqslant 0$ for $i=1,\ldots,t$ and $\sum_{i=1}^t\left(\lambda\alpha_i+(1-\lambda)\beta_i\right)=1$. This shows that

$$\lambda u + (1 - \lambda) v = \sum (\lambda_i \alpha_i + (1 - \lambda_i) \beta_i) x_i \in \text{conv}(X),$$

and therefore that conv(X) is convex.

Theorem 2. Let $X \subseteq \mathbb{R}^n$ be a set of points. Each convex set K containing X also contains conv(X).

Proof. Let K be a convex set containing X, and let $x_1, \ldots, x_t \in X$ and $\lambda_i \in \mathbb{R}$ with $\lambda_i \geq 0$, $i = 1, \ldots, t$ and $\sum_{i=1}^t \lambda_i = 1$. We need to show that $u = \sum_{i=1}^t \lambda_i x_i$ is contained in K. This is true for $t \leq 2$ by the definition of convex sets.

We argue by induction. Suppose that $t \ge 3$. If one of the λ_i is equal to 0, then one can represent u as a convex combination of t-1 points in X and, by induction, $u \in K$. Since $t \ge 3$, each $\lambda_i > 0$ and $\sum_{i=1}^t \lambda_i = 1$ one has $0 < \lambda_i < 1$ for $i = 1, \ldots, t$ and thus we can write

$$u = \lambda_1 x_1 + (1 - \lambda_1) \sum_{i=2}^{t} \frac{\lambda_i}{1 - \lambda_1} x_i.$$

One has $\lambda_i/(1-\lambda_1) > 0$ and

$$\sum_{i=2}^{t} \frac{\lambda_i}{1 - \lambda_1} = 1,$$

which means that the point $\sum_{i=2}^{t} \frac{\lambda_i}{1-\lambda_1} x_i$ is in K by induction. Again, by the definition of convex sets, we conclude that u lies in K.

Theorem 2 implies that conv(X) is the intersection of all convex sets containing X, i.e.,

$$\operatorname{conv}(X) = \bigcap_{\substack{K \supseteq X \\ K \text{ convex}}} K.$$

Definition 3. A set $C \subseteq \mathbb{R}^n$ is a *cone*, if it is convex and for each $c \in C$ and each $\lambda \in \mathbb{R}_{\geq 0}$ one has $\lambda \cdot c \in C$.

Similarly to Theorem 1 and Theorem 2 one proves the following.

Theorem 3. For any $X \subseteq \mathbb{R}^n$, the set cone(X) is a cone.

Theorem 4. Let $X \subseteq \mathbb{R}^n$ be a set of points. Each cone containing X also contains cone(X).

These theorems imply that cone(X) is the intersection of all cones containing X, i.e.,

$$cone(X) = \bigcap_{\substack{C \supseteq X \\ C \text{ is a cone}}} C.$$

Radon's lemma and Carathéodory's theorem

Theorem 5 (Radon's lemma). Let $A \subseteq \mathbb{R}^n$ be a set of n+2 points. There exist disjoint subsets $A_1, A_2 \subseteq A$ with

$$conv(A_1) \cap conv(A_2) \neq \emptyset$$
.

Proof. Let $A = \{a_1, ..., a_{n+2}\}$. We embed these points into \mathbb{R}^{n+1} by appending a 1 in the n+1-st component, i.e., we construct

$$A' = \{ \begin{pmatrix} a_1 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} a_{n+2} \\ 1 \end{pmatrix} \} \subseteq \mathbb{R}^{n+1}.$$

The set A' consists of n+2 vectors in \mathbb{R}^{n+1} . Those vectors are linearly dependent. Let

$$0 = \sum_{i=1}^{n+2} \lambda_i \binom{a_i}{1} \tag{2.5}$$

be a nontrivial linear representation of 0, i.e., not all λ_i are 0. Furthermore, let $P = \{i: \lambda_i \ge 0, i = 1, ..., n+2\}$ and $N = \{i: \lambda_i < 0, i = 1, ..., n+2\}$. We claim that

$$\operatorname{conv}(\{a_i : i \in P\}) \cap \operatorname{conv}(\{a_i : i \in N\}) \neq \emptyset.$$

It follows from (2.5) and the fact that the n+1-st component of the vectors is 1 that $\sum_{i \in P} \lambda_i = -\sum_{i \in N} \lambda_i = s > 0$. It follows also from (2.5) that

$$\sum_{i \in P} \lambda_i \, a_i = \sum_{i \in N} -\lambda_i \, a_i.$$

The point $u = \sum_{i \in P} (\lambda_i / s) \cdot a_i = \sum_{i \in N} (-\lambda_i / s) a_i$ is contained in conv $(\{a_i : i \in P\}) \cap \text{conv}(\{a_i : i \in N\})$, implying the claim.

Theorem 6 (Carathéodory's theorem). Let $X \subseteq \mathbb{R}^n$, then for each $x \in \text{cone}(X)$ there exists a set $\widetilde{X} \subseteq X$ of cardinality at most n such that $x \in \text{cone}(\widetilde{X})$. The vectors in \widetilde{X} are linearly independent.

Proof. Let $x \in \text{cone}(X)$, then there exist $t \in \mathbb{N}_+$, $x_i \in X$ and $\lambda_i \geqslant 0$, $i = 1, \ldots, t$, with $x = \sum_{i=1}^t \lambda_i x_i$. Suppose that $t \in \mathbb{N}_+$ is minimal such that x can be represented as above. We claim that $t \leqslant n$. If $t \geqslant n+1$, then the x_i are linearly dependent. This means that there are $\mu_i \in \mathbb{R}$, not all equal to 0 with

$$\sum_{i=1}^{t} \mu_i x_i = 0. {(2.6)}$$

By multiplying each μ_i in (2.6) with -1 if necessary, we can assume that at least one of the μ_i is strictly larger than 0. One has for each $\varepsilon \in \mathbb{R}$

$$x = \sum_{i=1}^{t} (\lambda_i - \varepsilon \cdot \mu_i) x_i. \tag{2.7}$$

What is the largest $\varepsilon^* > 0$ that we can pick for ε such that (2.7) is still a conic combination? We need to have

$$\lambda_i - \varepsilon \cdot \mu_i \geqslant 0$$
, for each $i \in \{1, \dots, t\}$. (2.8)

Let *J* be the set of indices $J = \{j : j \in \{1, ..., t\}, \mu_j > 0\}$. We observed that we can assume $J \neq \emptyset$. We have (2.8) as long as

$$\varepsilon \leqslant \lambda_j / \mu_j$$
 for each $j \in J$. (2.9)

This means that $\varepsilon^* = \min\{\lambda_j/\mu_j \colon j \in J\}$. Let $j^* \in J$ be an index where this minimum is attained. Since $\lambda_i - \varepsilon^* \cdot \mu_i \ge 0$ for all i = 1, ..., t and since $\lambda_{j^*} - \varepsilon^* \cdot \mu_{j^*} = 0$, we have $x \in \text{cone}(\{x_1, ..., x_t\} \setminus \{x_{j^*}\})$, which is a contradiction to the minimality of t

Corollary 1 (Carathéodory's theorem for convex hulls). Let $X \subseteq \mathbb{R}^n$, then for each $x \in \text{conv}(X)$ there exists a set $\widetilde{X} \subseteq X$ of cardinality at most n+1 such that $x \in \text{conv}(\widetilde{X})$.

Separation theorem and Farkas' lemma

We recall a basic fact from analysis, see, e.g. [1, Theorem 4.4.1].

Theorem 7. Let $X \subseteq \mathbb{R}^n$ be compact and $f: X \to \mathbb{R}$ be continuous. Then f is bounded and there exist points $x_1, x_2 \in X$ with $f(x_1) = \sup\{f(x) \colon x \in X\}$ and $f(x_2) = \inf\{f(x) \colon x \in X\}$.

Theorem 8. Let $K \subseteq \mathbb{R}^n$ be a closed convex set and $x^* \in \mathbb{R}^n \setminus K$, then there exists an inequality $a^T x \geqslant \beta$ such that $a^T y > \beta$ holds for all $y \in K$ and $a^T x^* < \beta$.

Proof. Since the mapping $f(x) = \|x^* - x\|$ is continuous and since for any $k \in K$, $K \cap \{x \in K : \|x^* - x\| \le \|x^* - k\|\}$ is compact, there exists a point $k^* \in K$ with minimal distance to x^* . Consider the midpoint $m = 1/2(k^* + x^*)$ on the line-segment $\overline{k^*x^*}$ and the hyperplane $a^Tx = \beta$ with $\beta = a^Tm$ and $a = (k^* - x^*)$. Clearly, $a^Tx^* = \beta - 1/2\|k^* - x^*\|^2$ and $a^Tk^* = \beta + 1/2\|k^* - x^*\|^2$. Suppose that there exists a $k' \in K$ with $a^Tk' \le \beta$. The points $\lambda k^* + (1-\lambda)k'$, $\lambda \in [0,1]$ are in K by the convexity of K, thus we can also assume that k' lies on the hyperplane, i.e., $a^Tk' = \beta$. This means that there exists a vector x' which is orthogonal to a and b' = m + x'. The distance squared of a point $\lambda k^* + (1-\lambda)k'$ with $\lambda \in [0,1]$ to m is, by Pythagoras equal to

$$\lambda^2 \| \frac{1}{2} a \|^2 + (1 - \lambda)^2 \| x' \|^2.$$

As a function of λ , this is increasing at at $\lambda = 1$. Thus there exists a point on the line-segment $\lambda x^* + (1 - \lambda)k$ which is closer to m than k^* . This point is also closer to x^* than k^* , which is a contradiction. Therefore $a^T k > \beta$ for each $k \in K$.

Theorem 9 (Farkas' lemma). Let $A \in \mathbb{R}^{m \times n}$ be a matrix and $b \in \mathbb{R}^m$ be a vector. The system Ax = b, $x \ge 0$ has a solution if and only if for all $\lambda \in \mathbb{R}^m$ with $\lambda^T A \ge 0$ one has $\lambda^T b \ge 0$.

Proof. Suppose that $x^* \in \mathbb{R}^n_{\geqslant 0}$ satisfies $Ax^* = b$ and let $\lambda \in \mathbb{R}^m_{\geqslant 0}$ with $\lambda^T A \geqslant 0$. Then $\lambda^T b = \lambda^T A x^* \geqslant 0$, since $\lambda^T A \geqslant 0$ and $x^* \geqslant 0$.

Now suppose that Ax = b, $x \ge 0$ does not have a solution. Then, with $X \subseteq \mathbb{R}^n$ being the set of column vectors of A, b is not in $\operatorname{cone}(X)$. The set $\operatorname{cone}(X)$ is convex and closed, see exercise 5. Theorem 8 implies that there is an inequality $\lambda^T x \ge \beta$ such that $\lambda^T y > \beta$ for each $y \in \operatorname{cone}(X)$ and $\lambda^T b < \beta$. Since for each $a \in X$ and each $\mu \ge 0$ one has $\mu \cdot a \in \operatorname{cone}(X)$ and thus $\lambda^T (\mu \cdot a) > \beta$, it follows that $\lambda^T a \ge 0$ for each $a \in X$. Furthermore, since $0 \in \operatorname{cone}(X)$ it follows that $0 \ge \beta$ and thus that $\lambda^T b < 0$.

Exercises

- 1) Let $\{C_i\}_{i\in I}$ be a family of convex subsets of \mathbb{R}^n . Show that the intersection $\bigcap_{i\in I} C_i$ is convex.
- 2) Show that the set of feasible solutions of a linear program is convex.
- 3) Prove Carathéodory's Theorem for convex hulls, Corollary 1.
- 4) Let $A \in \mathbb{R}^{n \times n}$ be a non-singular matrix and let $a_1, \ldots, a_n \in \mathbb{R}^n$ be the columns of A. Show that cone($\{a_1, \ldots, a_n\}$) is the polyhedron $P = \{y \in \mathbb{R}^n : A^{-1}y \ge 0\}$. Show that cone($\{a_1, \ldots, a_k\}$) for $k \le n$ is the set $P_k = \{y \in \mathbb{R}^n : a_i^{-1}x \ge 0, i = 1, \ldots, k, a_i^{-1}x = 0, i = k+1, \ldots, n\}$, where a_i^{-1} denotes the i-th row of A^{-1} .
- 5) Prove that for a finite set $X \subseteq \mathbb{R}^n$ the conic hull cone(X) is closed and convex. *Hint: Use Carathéodory's theorem and exercise* 4.
- 6) Find a countably infinite set $X \subset \mathbb{R}^2$ such that cone(X) is not closed. Are there any cones that are open?
- 7) Prove Theorem 3.
- 8) Prove Theorem 4.
- 9) Let $f: \mathbb{R}^n \to \mathbb{R}^d$ be a linear map.
 - a) Show that $f(K) = \{f(x) : x \in K\}$ is convex if K is convex. Is the reverse also true?
 - b) For $X \subseteq \mathbb{R}^n$ arbitrary, prove that conv(f(X)) = f(conv(X)).
- 10) Using Theorem 9, prove the following variant of Farkas' lemma: Let $A \in \mathbb{R}^{m \times n}$ be a matrix and $b \in \mathbb{R}^m$ be a vector. The system $Ax \leq b$, $x \in \mathbb{R}^n$ has a solution if and only if for all $\lambda \in \mathbb{R}^m_{\geq 0}$ with $\lambda^T A = 0$ one has $\lambda^T b \geq 0$.
- 11) Provide an example of a convex and closed set $K \subseteq \mathbb{R}^2$ and a linear objective function $c^T x$ such that $\min\{c^T x : x \in K\} > -\infty$ but there does not exist an $x^* \in K$ with $c^T x^* \leq c^T x$ for all $x \in K$.
- 12) Consider the vectors

$$x_1 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}, x_3 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, x_4 = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}, x_5 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Let $A = \{x_1, ..., x_5\}$. Find two disjoint subsets $A_1, A_2 \subseteq A$ such that

$$conv(A_1) \cap conv(A_2) \neq \emptyset$$
.

Hint: Recall the proof of Radon's lemma

13) Consider the vectors

$$x_1 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}, x_3 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, x_4 = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}, x_5 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

The vector

$$v = x_1 + 3x_2 + 2x_3 + x_4 + 3x_5 = \begin{pmatrix} 15\\14\\25 \end{pmatrix}$$

is a conic combination of the x_i .

Write v as a conic combination using only three vectors of the x_i .

Hint: Recall the proof of Carathéodory's theorem

References

1. J. E. Marsden and M. J. Hoffman. *Elementary Classical Analysis*. Freeman, 2 edition, 1993.