Lemma 0.1. Let N be a Carmichael number. Then N is not the power of a prime number.

Proof. Let $N = p^k$ with $p, k \in \mathbb{Z}_{\geq 2}$ and p prime (the case k = 1 is trivial). Using the binomial theorem, we have

$$(1+p^{k-1})^p = \sum_{i=0}^p \binom{p}{i} (p^{k-1})^i = 1+p^k + \binom{p}{2} p^{2k-2} + \dots,$$

that is, $(1+p^{k-1})^p$ is equal to 1 plus integers that are multiples of $p^k = N$. This implies $(1+p^{k-1})^p \equiv 1 \mod N$. Hence the order of $1+p^{k-1}$ in \mathbb{Z}_N is a divisor of p. But since p is prime and clearly $1+p^{k-1} \neq 1 \mod N$, the order of $1+p^{k-1}$ is exactly p.

Now suppose that N is Carmichael. Since $gcd(1+p^{k-1},N)=1$, we have that $(1+p^{k-1})^{N-1}\equiv 1 \mod N$. Since p is the order of $1+p^{k-1}$ in \mathbb{Z}_N , we get that N-1 is a multiple of p, that is, p divides N-1. But this is impossible, since p divides N.