Convexity

Prof. Friedrich Eisenbrand
Natalia Karaskova

Assignment Sheet 10

November 30, 2015

Definition

$C \subseteq \mathbb{R}^{n}$ is a convex cone if $\forall a, b \in C$ and $\lambda_{1}, \lambda_{2} \in \mathbb{R}_{\geq 0}, \lambda_{1} a+\lambda_{2} b \in C$
$C \subseteq \mathbb{R}^{n}$ is a polyhedral cone if $C=\left\{x \in \mathbb{R}^{n}: A x \leq 0\right\}$ for some $A \in \mathbb{R}^{m \times n}$. $C \subseteq \mathbb{R}^{n}$ is finitely generated if $C=\left\{\sum_{i=1}^{k} \lambda_{i} d_{i}: \lambda \geq 0\right\}$ for some $k \in \mathbb{N}$ and $d_{1} \ldots, d_{k} \in \mathbb{R}^{n}$

Exercise 1

Show that if $C \subseteq \mathbb{R}^{n}$ is a polyhedral cone, then C is a convex cone. Show that if $C \subseteq \mathbb{R}^{n}$ is finitely generated, then C is a convex cone.

Exercise 2

Show that if $C \subset \mathbb{R}^{n}$ is a convex cone, and $a^{\top} x \leq \beta$ is a valid inequality for C, such that $C \cap\left\{x \in \mathbb{R}^{n}\right.$: $\left.a^{\top} x=\beta\right\} \neq \emptyset$, then $\beta=0$.

Exercise 3 [\star]

Let $C \subset \mathbb{R}^{n}$. Show that C is a polyhedral cone if and only if C is finitely generated.
[Hint: To show a finitely generated set is a polyhedral cone, apply the idea of Fourier-Motzkin elimination that we saw during the lecture. To obtain a finite generating set for a polyhedral cone C, consider the intersection of C with the cube $\left.D=\left\{x \in \mathbb{R}^{n}:\|x\|_{\infty} \leq 1\right\}\right]$

Exercise 4

Let $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ be fixed and let $P=\left\{y \in \mathbb{R}^{n}: y=\sum_{i=1}^{k} \lambda_{i} v_{i}\right.$ for some $\left.\lambda \geq 0, \sum_{i=1}^{k} \lambda_{i}=1\right\}$. Describe a real matrix C and a vector d such that

$$
P=\left\{y \in \mathbb{R}^{n}: \exists \lambda \in \mathbb{R}^{k} \text { with } C\binom{y}{\lambda} \leq d\right\}
$$

Exercise 5

Let S be a polyhedron of the form $S=\left\{\binom{x}{\lambda} \in \mathbb{R}^{n+k}: x \in \mathbb{R}^{n}, \lambda \in \mathbb{R}^{k}: C\binom{x}{\lambda} \leq d\right\}$ for some $C \in$ $\mathbb{R}^{m \times(n+k)}$ and $d \in \mathbb{R}^{m}$. Set $S_{0}=S$ and for $i=1, \ldots, k$ define recursively

$$
S_{i}=\Pi_{\left(x_{1}, \ldots, x_{n}, \lambda_{1}, \ldots, \lambda_{k-i}\right)^{\top}}\left(S_{i-1}\right)
$$

Show that $\Pi_{x}(S)=S_{k}$ and conclude that $\Pi_{x}(S)$ is a polyhedron.

The deadline for submitting solutions is Monday, December 7, 2015

