Convexity

Prof. Friedrich Eisenbrand Natalia Karaskova

Assignment Sheet 7

November 2, 2015

Exercise 1

Show that $l_p^k = (\mathbb{R}^k, \|\cdot\|_p)$ is a norm for $p \ge 1$ and give an example that violates the triangle inequality for p < 1. Recall that for $x, y \in X = \mathbb{R}^k$, we defined

$$d_X(x, y) = ||x - y||_p = \left(\sum_{i=1}^k |x_i - y_i|^p\right)^{\frac{1}{p}}$$

Exercise 2

Show that the following graph cannot be embedded into l_2^k for any k.

Exercise 3

Let $f: X \to Y$ be an isometric embedding. Can (X, d_X) be a true metric, and (Y, d_Y) be a pseudometric? Can (X, d_X) be a pseudometric, and (Y, d_Y) be a true metric?

Exercise 4

If (X, d_X) and (Y, d_Y) are metric spaces. If $f: X \to Y$ is a bijective isometric embedding, is f^{-1} a isometric embedding with the same metrics?

Exercise 5 [★]

Show that if $f:(X,d_X) \to (Y,d_Y)$ is bijective, then the distortion of f equals $||f||_{Lip}||f^{-1}||_{Lip}$ where the distortion of f is inf $\{D: f \text{ is a } D - \text{embedding}\}$ and

$$||f||_{Lip} = \sup \left\{ \frac{d_Y(f(x), f(y))}{d_X(x, y)} : x, y \in X \right\}$$

Exercise 6

 $C \subseteq \mathbb{R}^n$ is a convex cone if $\bullet \ \forall a \in C, \lambda \in \mathbb{R}_{\geq 0}, \lambda a \in C$ $\bullet \ \forall a, b \in C, a + b \in C$

Show that a convex cone is a convex set.

The deadline for submitting solutions is **Monday**, **November 9**, **2015**.