Convexity

Prof. Friedrich Eisenbrand Natalia Karaskova

Assignment Sheet 5

October 19, 2015

Exercise 1

The Gamma function if defined as $\Gamma(x) = \int_0^\infty r^{x-1} e^{-r} dr$ for x > 0. Prove that

- 1. $\Gamma(x+1) = x\Gamma(x)$.
- 2. $\Gamma(n) = (n-1)!$ for positive integer n.

Exercise 2

Prove the missing step in the computation of v_n , the volume of the ball B_1^n from the lecture. Namely show that

$$\int_{0}^{\infty} nR^{n-1}e^{-\frac{R^{2}}{2}}dR = 2^{\frac{n}{2}}\Gamma\left(\frac{n}{2} + 1\right)$$

Exercise 3 [★]

Let Δ be the standard *d*-dimensional simplex:

$$\Delta = \{(\xi_1, \dots, \xi_{d+1}) : \xi_i \ge 0 \text{ for } i = 1, \dots, d+1 \text{ and } \xi_1 + \dots + \xi_{d+1} = 1\}.$$

Consider Δ as a d-dimensional convex body in the affine hyperplane

$$H = \{(\xi_1, \dots, \xi_{d+1}) : \xi_1 + \dots + \xi_{d+1} = 1\}.$$

- 1. Prove that the maximum volume ellipsoid E_{in} of Δ is the ball of radius $\frac{1}{\sqrt{d(d+1)}}$ centered at $r = \left(\frac{1}{d+1}, \dots, \frac{1}{d+1}\right)$.
- 2. Show that the constant d in John's Lemma cannot be improved. That is, show that

$$\Delta \not\subseteq (d-\epsilon)(E_{in}-r)+r$$

for any $\epsilon > 0$.

Exercise 4

Let V be a vector space and let $p:V\to\mathbb{R}$ be a norm. Let $K_p=\{x\in V:p(x)\leq 1\}$. Prove that K_p is a convex set, symmetric about the origin, which does not contain straight lines and such that $\cup_{\lambda\geq 0}(\lambda K_p)=V$. Conevrsely, let $K\subset V$ be a convex set, symmetric about the origin, which does not contain straight lines and such that $\cup_{\lambda\geq 0}(\lambda K)=V$. For $x\in V$ let $p_K(x)=\inf\{\lambda>0:x\in\lambda K\}$. Prove that p_K is a norm.

The deadline for submitting solutions is Monday, October 26, 2015.