Convexity

Prof. Friedrich Eisenbrand Natalia Karaskova

Assignment Sheet 4

October 12, 2015

Exercise 1 [*]

Let $\Lambda \subset \mathbb{R}^d$ be a lattice and let $v \in \Lambda \setminus \{0\}$ be a shortest non-zero vector of Λ . Show there exist a basis of Λ of the form (v, a_2, \dots, a_d) .

[*Hint*: Starting from a basis (b_1, \ldots, b_d) of Λ , show that there exists $U \in \mathbb{Z}^{d \times d}$ with $det(U) = \pm 1$ and $(b_1, \ldots, b_d)U = (v, a_2, \ldots, a_d)$.]

Exercise 2

Let $\Lambda \subset \mathbb{R}^d$ be a lattice, v a shortest non-zero vector in Λ and $(v, a_2, ..., a_d)$ a basis of Λ . Show that $pr(\Lambda)$ is a (d-1)-dimensional lattice with basis $(pr(a_2), ..., pr(a_d))$, where pr is the projection map on the subspace of \mathbb{R}^d orthogonal to v, i.e.

$$pr: \mathbb{R}^d \to \mathbb{R}^d$$
$$x \mapsto \left(x - \frac{x^\mathsf{T} v}{v^\mathsf{T} v} v\right)$$

Exercise 3

Let $\Lambda \subset \mathbb{R}^2$ be a lattice. Prove directly that $\mu(\Lambda)\rho(\Lambda^*) \leq \frac{\sqrt{5}}{4}$.

Exercise 4

Draw ellipsoid *E* defined by $A = \begin{pmatrix} 1 & 3 \\ 2 & 9 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. What are the axes of *E*?

Exercise 5

Let $K \subset \mathbb{R}^d$ be a compact convex body with a non-empty interior and suppose you are given E_{in} , the ellipsoid of largest volume contained in K. Show how to compute $u \in \mathbb{Z}^d$ s.t. $\max_{x,y \in K} u^\intercal(x-y) \leq d \cdot w(K)$ by one shortest lattice vector computation, where w(K) is defined to be

$$w(K) = \min_{u \in \mathbb{Z}^d \setminus \{0\}} \max_{x,y \in K} u^{\mathsf{T}}(x - y)$$

Exercise 6

Show how to solve the following problem in $n^{O(n)}$ calls to an oracle that computes an integer vector $u \in \mathbb{Z}^d \setminus \{0\}$ with $\max_{x,y \in K} u^T(x-y) \le d \cdot w(K)$.

1

Given a convex body K, decide whether $K \cap \mathbb{Z}^d = \emptyset$.

The deadline for submitting solutions is Monday, October 19, 2015.