Combinatorial Optimization

Fall 2013

Assignment Sheet 6

Exercises marked with a \star can be handed in for bonus points. Due date is December 17.

In this exercise sheet, we will mostly deal with statements left unproved in the last two lectures. $f: 2^U \to \mathbb{R}_+$ is always submodular. Recall that, for a set $S \subseteq U$ and for an element $u \in U$, we have $f_u(S) := f(S \cup u) - f(S)$ (i.e. the *marginal contribution* of u to S).

Exercise 1

Let $H \subseteq U$. Prove that $g(A) = f(A \cup H)$ for $A \subseteq U$ is a submodular function.

Greedy

Input: a monotone, nonnegative submodular function $f: 2^U \to \mathbb{R}_+$, an integer k **Output**: a set $S \subseteq U$ of cardinality k.

- 1. Let $S_0 = \emptyset$.
- 2. **For** i = 1, ..., k: let $u_i \in U$ such that $f_{u_i}(S_{i-1})$ is maximum. Set $S_i = S_{i-1} \cup \{u_i\}$.
- 3. Output *S*.

Exercise 2

Let S^* be the subset of U of maximum cost among those of cardinality k.

- (*i*) show that wrt the greedy algorithm above, $f(S^*) f(S_i) \le (1 1/k)^i f(S^*)$ for each *i*. (Hint: find a lower bound on $f_{u_i}(S_{i-1})$, then prove the statement by induction on *i*.)
- (*ii*) apply (i) to deduce that $f(S) \ge (1 1/e)f(S^*)$ (again wrt the greedy algorithm).

Exercise 3

Recall the following result (*) proved in class, and prove its generalization (**).

- (*) For $A \subseteq U$, denote by A(p) a random subset of A where each element appears with probability p. Then $E(f(A(p))) \ge (1-p)f(\emptyset) + pf(A)$.
- (**) Let $A, B \subseteq U$, and let A(p), B(q) be their independently sampled subsets, where each element of A appears in A(p) with probability p and each element of B appears in B(q) with probability q. Then $E(f(A(p) \cup B(q))) \ge (1-p)(1-q)f(\emptyset) + p(1-q)f(A) + q(1-p)f(B) + pqf(A \cup B)$. (Hint: first use (*) (conditioning on the outcome of A(p)) and Exercise 1 to show

 $E(f(A(p) \cup B(q))) \ge E((1-q)f(A(p)) + qf(A(p) \cup B))$. Then apply similar arguments to conclude.)

Exercise $4 (\star)$

Suppose f is nonnegative. For $A \subseteq U$, denote by A(p) a random subset of A where each element appears with probability $at \ most \ p$ (nb: different elements may have different probabilities). Show that $E(f(A(p))) \ge (1-p)f(\emptyset)$.

Exercise 5

Recall the following algorithm, where we are assuming (wlog) that $2k \le n$, and that there is a subsets of U of 2k dummy elements whose marginal contribution to any set is 0.

Randomized Greedy

Input: a nonnegative submodular function $f: 2^U \to \mathbb{R}_+$, an integer k **Output**: a set $S \subseteq U$ of cardinality k.

- 1. Let $S_0 = \emptyset$.
- 2. **For** i = 1, ..., k,
 - a) Let $M_i \subseteq U \setminus S_i$ be a set of size k maximizing $\sum_{u \in M_i} f_u(S_i)$.
 - b) Pick an element u of M_i uniformly at random, and set $S_i = S_{i-1} \cup \{u\}$.
- 3. Output S_k .

In class we saw that it provides a 1-1/e approximation for the problem $\max\{f(S): |S| \le k\}$ when f is monotone. We are now going to show it gives a 1/e approximation for f non-monotone. Let S^* be the optimum solution. First, recall that in class we argued (for the monotone case, but the proof still holds) that: $E(f_{u_i}(S_{i-1})) \ge \frac{1}{k} E(f(S_{i-1} \cup S^*) - f(S_{i-1}))$.

- (i) Prove that $f(S_{i-1} \cup S^*) \ge (1 1/k)^i f(S^*)$. (Hint: use Exercises 1 and 4)
- (ii) Prove that $E(f(S_i)) \ge (1/k)(1 1/k)^{i-1} f(S^*)$, and conclude $E(f(S_k)) \ge f(S^*)/e$.

Exercise 6

Prove the following statement. Let (M, \mathcal{I}) be a matroid, and A, B be two basis. Then there exists $g: A \leftrightarrow B$ such that, for each $u \in A$, $(A \setminus \{u\}) \cup g(u)) \in \mathcal{I}$.

Exercise 7 (*)

In class we saw that, if we pick a random set where each element appears with probability 1/2, we obtain an expected 1/4 approximation to the problem of computing the set A that maximizes f(A). Call the output of this algorithm S, and the optimum solution S^* .

- (i) Is 1/4 the right answer? Give an example where the ratio $E(f(S))/f(S^*)$ is as small as you can.
- (ii) Prove that, when f is the cut function of an undirected graph, S is a 1/2 approximation in expectation.