Combinatorial Optimization

Fall 2013

Assignment Sheet 5

Exercises marked with a \star can be handed in for bonus points. Due date is December 3.

Recall that in class we saw that the randomized contraction (Karger's) algorithm provides a minimum cut with probability at least n^{-2} in time $O(n^2)$. Hence in $O(n^4)$ time (i.e. after n^2 repetitions of randomized contraction), the probability that we obtain a min cut is at least $1 - (1 - n^{-2})^{n^2} \ge 1 - e^{-1} = 1 - 1/e$, hence a strictly positive constant.

Exercise 1

Consider the following algorithm to compute a min-cut in a graph G(V, E). While the graph has at least 3 vertices, take uniformly at random a pair of distinct vertices $u, v \in V$, and contract them. Then output the only cut of the remaining graph. Is this a good algorithm?

Exercise 2

Consider the following algorithm for computing a min-weight cut in a graph.

Iterative-contraction

Input: a weighted graph *G*

Output: a cut of G

- 1. **If** $|V| \le 6$, then **return** a minimum weighted cut of *G* by enumeration.
- 2. Else
 - a) Set $t = 1 + \lceil |V|/\sqrt{2} \rceil$.
 - b) Apply twice the random contraction algorithm to the graph G, and each time stop when your graph has t vertices. Call the resulting graphs H_1 and H_2 , respectively.
 - c) Compute Iterative-contraction(H_1) and Iterative-contraction(H_2), and **return** the cut with smallest weight among the two.
- (i) Show that Iterative-contraction runs in $O(n^2 \log n)$ time.
- (ii) [\star] Show that Iterative-contraction provides a min cut with probability $\Omega(1/\log n)$. (Hint: What is the probability that random contraction does not "kill" a minimum cut after n-t iterations?)
- (iii) [★] Compare Iterative-contraction with the randomized contraction algorithm.

Exercise 3

Consider the following modification of the random contraction algorithm: Apply the algorithm until the graph is reduced to a graph G' with t vertices. Then, compute a minimum cut on G' (this requires $O(|V(G')|^3)$). Show that t can be tuned so that this routine can be repeated as to provide an algorithm with running time $\theta(n^{8/3})$ that computes a minimum cut with probability at least 1/2. Show that this is tight (i.e., we cannot choose t as to achieve a better running time, and at the same time have a probability of success of at least 1/2).

Exercise 4

Given a weighted graph G(V, E), you aim at finding a collection $\mathscr C$ of cuts of G such that, for each $s, t \in V$, there exists a min (s, t)-cut in G that is contained in $\mathscr C$. How small can $|\mathscr C|$ be? Show examples proving that your bound is tight. Can you compute such a minimum $\mathscr C$ in polynomial time?

Exercise 5

Given a graph G(V, E) and any two nodes s, t, show that a minimum cut in G is either a minimum (s, t)-cut, or a minimum cut in the graph obtained from G by contracting s and t.

Exercise 6 (*)

An ordering v_1, \ldots, v_n of the vertices of a graph is called *good* if each v_i realizes $\max_{v \notin \{v_1, \ldots, v_{i-1}\}} |\{uv : u \in \{v_1, \ldots, v_{i-1}\}\}|$. Consider the following algorithm to compute a mincut in a graph G(V, E).

Input: an unweighted graph *G*

Output: the cardinality of a minimum cut of *G*

- 1. Set $G^n = G(V, E)$.
- 2. **For** k = n, n 1, ..., 2:
 - a) Compute a good ordering $v_1, ..., v_{|V(G^k)|}$ of G^k , and let x^k be the degree of $v_{|V(G^k)|}$ in G^k .
 - b) Define G^{k-1} from G^k by contracting $v_{|V(G^k)|}$ and $v_{|V(G^k)|-1}$.
- 3. Output the minimum of $x^2, ..., x^n$.
- (i) Prove that the algorithm is correct. (Hint: use the previous exercise).
- (ii) Can one deduce from the output the set of vertices in a minimum cut?

Exercise 7

Prove or disprove the following: in each graph G(V, E) with minimum degree d, there exists a pair of nodes s, t with d edge-disjoint paths between them in G.