Combinatorial Optimization

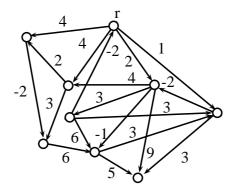
Fall 2013

Assignment Sheet 4

Exercises marked with a \star can be handed in for bonus points. Due date is November 19.

Exercise 1

Apply the algorithm for computing a mimimum-cost r-arborescence to the digraph below. Then replace the edge of cost 1 with an edge of cost 5, and solve again.



Exercise 2

Consider the *minimum disconnection problem*: given a graph G(V, E) with costs $c : E \to \mathbb{R}$, find the set $F \subseteq E$ of minimum cost such that $G(V, E \setminus F)$ is disconnected. Under which conditions this is equivalent to the minimum cut problem on G, c?

Exercise 3 (*)

Consider a finite set of points $V \subseteq \mathbb{R}^2$ not lying on the same line. Those induce a complete graph G with vertex set V and edge cost $c(uv) = ||u - v||_2$ for each $u, v \in V$. The *Voronoï diagram* of V is the family of sets

$$P_v = \{x \in \mathbb{R}^2 : ||x - v||_2 = \min_{u \in V} ||x - u||_2\}$$

for $v \in V$. The *Delaunay triangulation* of V is the graph G'(V, E') with vertex set V and edges uv for each $u \neq v \in V$ such that $|P_v \cap P_u| > 1$.

- (a) Show that there exists a minimum spanning tree (mst) of G whose edge set is contained in E'. Is the previous true for every mst of G? Prove or give a counterexample.
- (b) Suppose now to be given the adiacency lists and the incidence matrix of G', as well as the cost c. How fast can a minimum spanning tree in G be computed?

(c) Now suppose that *c* is not the euclidean distance, but any given norm. Does any of the two statement from (a) hold? Prove or give counterexamples.

Exercise 4

In class we saw that a *submodular function* is a function $f: 2^I \to \mathbb{R}$ where I is a ground set, that satisfies

- 1. For every $S, T \subseteq I$, $f(S) + f(T) \ge f(S \cap T) + f(S \cup T)$.
- (a) Show that each of the following two properties is equivalent to 1.
 - 2. For each $S \subseteq T \subseteq I$ and $x \in I \setminus T$, we have $f(T \cup \{x\}) f(T) \le f(S \cup \{x\}) f(S)$.
 - 3. For each $S \subseteq I$ and $x \neq y \in I \setminus S$, we have $f(S \cup \{x\}) + f(S \cup \{y\}) \ge f(S \cup \{x, y\}) + f(S)$.
- (b) Consider the following modification of property 2:
 - 2'. For each $S \subseteq T \subseteq I$ and $x \in I$, we have $f(T \cup \{x\}) f(T) \le f(S \cup \{x\}) f(S)$.

Show how to modify 1 to 1' as to have equivalence between 1' and 2'.

Exercise 5

A function is *supermodular* if -f is submodular. For each of the following functions, detect if it is submodular, supermodular, both, or none of the two.

- (a) Given a graph G(V, E) with costs c on the edges, let $f(S) = c(\delta(S))$ for $S \subseteq V$.
- (b) Given a directed graph D(V, A) with nonnegative costs c on the arcs, let $f(S) = c(\delta_+(S))$ for $S \subseteq V$.
- (c) Given a graph G(V, E), let f(F) be the number of connected components of the graph G(V, F), for all $F \subseteq E$.
- (*d*) Given a graph G(V, E), let f(S) be the number of connected components of the subgraph of G induced by S (i.e. G'(S, E') with $uv \in E'$ iff $uv \in E$ and $u, v \in S$), for all $S \subseteq V$.
- (e) Given a bipartite graph $G(A \cup B, E)$, let f(X) = |N(X)| for all $X \subseteq A$.
- (f) The rank function of a matroid.
- (*g*) Let $X^1, ..., X^n$ be discrete random variables. For $S \subseteq \{1, ..., n\}$, let f(S) be the entropy of the random variables $\{X^i : i \in S\}^1$.

Exercise 6

Deduce from the random contraction min-cut algorithm an upper bound to the number of minimum cuts in a graph. Is this bound tight?

¹The *entropy* of a random variable X with possible values x_1, \ldots, x_k is $H(X) = -\sum_{i=1}^k p(x_i) \log(p(x_i))$, where $p(x_i)$ is the probability mass function of x_i . The *entropy* of a set of random variables X^1, \ldots, X^m , where for $i = , \ldots, n$ the possible values of X^i are $x_1^i, \ldots, x_{k_i}^i$ is $H(X) = -\sum_{i_1, i_2, \ldots, i_m} p(x_{i_1}^1, x_{i_2}^2, \ldots, x_{i_m}^m) \log(p(x_{i_1}^1, x_{i_2}^2, \ldots, x_{i_m}^m))$, where p is the joint probability distribution of X^1, \ldots, X^m .