Combinatorial Optimization

Adrian Bock Fall 2011

Sheet 3

October 20, 2011

General remark:

In order to obtain a bonus for the final grading, you may hand in written solutions to the exercise marked with a star at the beginning of the exercise session on November 1.

Exercise 1

Let t(x) = Ax + b be the mapping that transforms the 2-dimensional unit ball into the ellipsoid E(A, b). Draw E(A, b) for $A = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Exercise 2

- (i) Show that the unit simplex $\Delta = \text{conv}\{0, e_1, \dots, e_n\} \subset \mathbb{R}^n$, where e_j are the standard unit vectors, has volume $\frac{1}{n!}$.
- (ii) Show that the volume of the simplex conv $\{v_0, v_1, \dots, v_n\} \subset \mathbb{R}^n$ is $\frac{|\det(v_1 v_0, \dots, v_n v_0)|}{n!}$.

Exercise $3 (\star)$

The purpose of this exercise is to review the steps of the ellipsoid method in greater detail for the case where we want to use it to compute a max-weight matching of G = (V, E) with positive integer weights $w \in \mathbb{Z}_+^{|E|}$.

Let μ_w be the maximum weight of a matching and let $P_G = \text{conv}\{\chi^M : M \text{ matching}\}$ be the matching polytope.

Show that

- (i) $\mu_w = z^* + 1$, where z^* is the largest integer such that $P_G \cap (w^T x \ge z + \frac{1}{2})$ has positive volume.
- (ii) if z is an integer such that $P_G \cap (w^T x \ge z + \frac{1}{2})$ has positive volume, then $\operatorname{vol}\left(P_G \cap (w^T x \ge z + \frac{1}{2})\right) \ge \frac{1}{n!(2||w||)^n \cdot n^{n/2}}$
- (iii) the ellipsoid-method needs a polynomial (in encoding length) number of iterations, to find out whether $P_G \cap (w^T x \geq z)$ has positive volume for some integer z. (Find a suitable initial ellipsoid and estimate number of iterations)
- (iv) Complete the description of an algorithm using the ellipsoid method that computes μ_w (binary search) and a point in $P_G \cap (w^T x \ge \mu_w \frac{1}{2})$. You can assume an oracle for the separation problem.

Exercise 4

Describe an algorithm that given as input

- an integral polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.
- an objective function vector $c \in \mathbb{Z}^n$,
- the optimal objective function value $z = \max\{c^T x \mid x \in P\}$, and
- a feasible point $x^* \in P$ with $z \frac{1}{2} \le c^T x^* \le z$

computes an inclusion-wise minimal optimal face $F = \{x \in \mathbb{R}^n \mid A'x = b'\}$ of P. The running time of your algorithm shall be bounded by a polynomial in n and m.