Discrete Optimization (Spring 2018)

Assignment 11

Problem 4 could be **submitted** until May 25 12:00 noon into the right box in front of MA C1 563. You are allowed to submit your solutions in groups of at most three students.

Problem 1

Let $M \in \mathbb{Z}^{n \times m}$ be totally unimodular. Prove that the following matrices are totally unimodular as well:

- 1. M^T
- 2. $(M I_n)$
- 3. (M M)
- 4. $M \cdot (I_n 2e_i^T e_j)$ for some j.

 I_n is the $n \times n$ identity matrix and e_j is the vector having a 1 in the j-th component, and 0 in the other components.

Problem 2

Let G be a graph and let A be its node-edge incidence matrix. We have seen in class that if G is bipartite then A is totally unimodular. Prove the converse, *i.e.*, if A is totally unimodular then G is bipartite.

Problem 3

Consider a bipartite graph $G = (A \cup B, E)$. Assume there exist matchings M_A and M_B covering vertices $A_1 \subseteq A$ and $B_1 \subseteq B$, respectively. Prove that there always exists a matching that covers $A_1 \cup B_1$.

Hint: The symmetric difference $M_A \Delta M_B$ consists of only cycles and paths.

Problem 4 (\star)

Given a graph G(V, E), a perfect matching of G is a matching which covers all the vertices (equivalently, a matching of cardinality |V|/2). Suppose you are given an oracle that, given a graph G, tells you whether G has a perfect matching or not. Show how to use this oracle to find a maximum cardinality matching of a graph G(V, E), using at most |V| + |E| calls to the oracle.

Hint: you should modify the graph at each call of the oracle.

Problem 5

A family of sets $C \subset 2^{[n]}$ is a chain if for all $S, T \in C$ we have either $S \subseteq T$ or $T \subseteq S$. Suppose C_1 and C_2 are two chains. Let $A \in \{0,1\}^{(|C_1|+|C_2|)\times n}$ be the incidence matrix of $C_1 \cup C_2$, i.e. $A_{S,i} = 1$ if $i \in S$ and 0 otherwise, for $i = 1, \ldots, n$ and $S \in C_1 \cup C_2$. Prove that A is totally unimodular. Hint: use induction on the size of a square submatrix of A.