Prof. Eisenbrand December 9, 2016

Assistant: Manuel Aprile

Combinatorial Optimization (Fall 2016)

Assignment 10

Deadline: December 16 10:00, into the right box in front of MA C1 563.

Exercises marked with a \star can be handed in for bonus points.

Problem 1

Recall that in class we defined a chain \mathcal{C} to be a family of sets such that for all $S, T \in \mathcal{C}$ we have either $S \subseteq T$ or $T \subseteq S$. Suppose \mathcal{C}_1 and \mathcal{C}_2 are two chains. Let A be the matrix with rows χ^S for all $S \in \mathcal{C}_1 \cup \mathcal{C}_2$. Prove that A is totally unimodular. That is, show that for all square submatrices B of A we have $\det(B) \in \{0, \pm 1\}$.

Solution:

As seen in class, since C_1 and C_2 are chains we can assume without loss of generality that every column of A has at most one 1 within the rows in C_1 and at most one 1 within the rows in C_2 since if this was not the case we can just perform elementary row operations without modifying the determinant of any square submatrix. Let B be any square submatrix of A of size k, we perform induction on k. The result is immediate for k = 1 as A has 0/1 entries. For $k \geq 2$, there are several cases:

- There is an all zero column in B. Then det(B) = 0.
- Every column of B has two 1's, one in a row in C_1 , one in a row of C_2 . Then, summing all the rows in C_1 and subtracting all rows in C_2 , gives the 0 vector, hence $\det(B) = 0$.
- There is a column of B with exactly one 1. Then we can expand along this column to compute the determinant and the result follows by induction.

Problem 2 (*)

Given a graph G(V, E), the spanning tree polytope $P_{ST}(G)$ is defined as follows:

$$P_{ST}(G) = \{x \in \mathbb{R}^E : x(E(U)) \le |U| - 1$$
$$x(E) = |V| - 1$$
$$x \ge 0\}$$

We will show that each vertex of $P_{ST}(G)$ is integral (i.e. $P_{ST}(G)$ is the convex hull of the incidence vectors of the spanning trees of G) by an uncrossing argument, similarly as seen in class. Given a finite set X, two sets $A, B \subset X$ are called intersecting if $A \cap B, A \setminus B, B \setminus A$ are all non-empty; a family $\mathcal{L} \subset 2^X$ is said to be laminar if no two sets $A, B \in \mathcal{L}$ are intersecting. Given x^* a vertex of $P_{ST}(G)$, let $\mathcal{F} = \{U \subset V : x^*(E(U)) = |U| - 1\}$.

- 1. Let $A, B \in \mathcal{F}$, show that $A \cap B, A \cup B \in \mathcal{F}$.
- 2. Show that if \mathcal{L} is a maximal laminar subfamily of \mathcal{F} , then $span(\mathcal{L}) = span(\mathcal{F})$ (where $span(\mathcal{F}) = span(\chi^{E(A)}, A \in \mathcal{F})$, and similarly for \mathcal{L}).

3. Let L be the matrix with rows χ^S for $S \in \mathcal{L}$, where \mathcal{L} is laminar. Use the fact that L is totally unimodular (which can be proven similarly as in Problem 1) to show that x^* has integer coordinates only.

Solution:

1. We have:

$$|A| - 1 + |B| - 1 = x^*(E(A)) + x^*(E(B)) \le x^*(E(A \cup B)) + x^*(E(A \cap B))$$

where the inequality follows since the edges in $E(A \cap B)$ are counted twice and each other edge induced by A or B is also induced by $A \cup B$. Now,

$$x^*(E(A \cup B)) + x^*(E(A \cap B)) \le |A \cup B| - 1 + |A \cap B| - 1 = |A| - 1 + |B| - 1$$

hence all the inequalities hold with equality and in particular $x^*(E(A \cup B)) = |A \cup B| - 1$ and $x^*(E(A \cap B)) = |A \cap B| - 1$.

- 2. Similarly as in the proof seen in class, for $A \in \mathcal{F}$ we define $viol(A) = \{B \in \mathcal{L} : A, B \text{ are intersecting}\}$. Assume by contradiction that $span(\mathcal{L})$ is a strict subset of $span(\mathcal{F})$, and let A such that $\chi^A \in span(\mathcal{F}) \setminus span(\mathcal{L})$ and |viol(A)| is minimum. By maximality of \mathcal{L} , $|viol(A)| \geq 1$ otherwise $\mathcal{L} \cup A$ would be a larger laminar family contained in \mathcal{F} . Hence let $B \in viol(A)$, we claim that $|viol(A \cap B)| < |viol(A)|$. Indeed, let $C \in viol(A \cap B)$, $C \neq B$, we have that $C \setminus A \cap B$, $A \cap B \setminus C$, $A \cap B \cap C$ are non-empty. Moreover, $C \in \mathcal{L}$, hence either $C \subset B$, or $B \subset C$ or $B \cap C = \emptyset$. The last one is not possible as $A \cap B \cap C \subset B \cap C$ Assume $C \subset B$: then if $C \subset A$, $C \subset A \cap B$, a contradiction to $C \setminus A \cap B$ being non-empty. If $A \subset C$, then $A \subset B$, a contradiction to $B \in viol(A)$. If $A \cap C = \emptyset$, then we get again a contradiction to $A \cap B \cap C$ being non-empty. Hence in this case A, C are intersecting and the claim is proved. In the case $B \subset C$, the claim is proved similarly. With analogous arguments one proves that $|viol(A \cup B)| < |viol(A)|$. Now, by minimality of |viol(A)|, we must have that $\chi^{E(A \cup B)}$, $\chi^{E(A \cap B)} \in span(\mathcal{L})$, but then $\chi^{E(A)} = \chi^{E(A \cup B)} + \chi^{E(A \cap B)} \chi^{E(B)} \in span(\mathcal{L})$, a contradiction. (Notice that the equality holds because $A, B \in \mathcal{F}$ as seen in the proof of part 1).
- 3. x^* is the unique solution of the system x(E(U)) = |U| 1 for

$$x(E(U)) = |U| - 1 \ \forall \ U \in \mathcal{F}$$

 $x_e = 0 \ \forall \ e \in \bar{E}$

for some $\bar{E} \subset E$. Using part 2, we can reduce the system to

$$x(E(U)) = |U| - 1 \ \forall \ U \in \mathcal{L}$$

 $x_e = 0 \ \forall \ e \in \bar{E}$

Now, the matrix associated to the system is totally unimodular, hence x^* is an integer vector.