Discrete Optimization (Spring 2017)

Assignment 10

Problem 1 can be submitted until May 19 12:00 noon into the right box in front of MA C1 563.

You are allowed to submit your solutions in groups of at most three students.

Problem 1 (\star)

Show the following. If $P \subseteq \mathbb{R}^n$ is a bounded and full-dimensional polyhedron, then there exist vertices v_1, \ldots, v_{n+1} of P that are affinely independent, i.e., $v_2 - v_1, v_3 - v_1, \ldots, v_{n+1} - v_1$ are linearly independent. Hint: If $a^T x = \beta$ is some hyperplane, where $a \in \mathbb{R}^n \setminus \{0\}$, then there exists a vertex of P that is not contained in that hyperplane.

Problem 2

Let $a_1, \ldots, a_n \in \mathbb{Z}^n$ be linearly independent. Show that

$$vol(conv(0, a_1, ..., a_n)) = |\det(a_1, ..., a_n)|/n!.$$

Problem 3

Let $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ be a polyhedron and $\varepsilon > 0$ be a real number. Show that $P_{\varepsilon} = \{x \in \mathbb{R}^n \mid Ax \leq b + \varepsilon \cdot \mathbf{1}\}$ is full-dimensional if $P \neq \emptyset$.

Problem 4

Let $a \in \mathbb{Q}^n$, $A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^m$ be given as the input and $P := \{x \in \mathbb{R}^n : Ax \leq b\}$. Show that the corresponding *separation problem* can be solved in time polynomial in m, n, and the binary encoding length of a, A and b: Determine whether $a \in P$ and if not compute an inequality $c^T x \leq \beta$ which is valid for P with $c^T a > \beta$.

Problem 5

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ be a full dimensional 0/1 polytope and $c \in \mathbb{Z}^n$. A polytope in \mathbb{R}^n is 0/1 if the set of its vertices is a subset of $\{0,1\}^n$. We will show how we can use the ellipsoid method to solve the optimization problem max $\{c^{\top}x : x \in P\}$.

Define $z^* := \max \left\{ c^\top x : x \in P \right\}$ and $c_{\max} := \max \left\{ |c_i| : 1 \le i \le n \right\}$.

- i) Show that the ellipsoid method requires $O(n^3 \log(n) c_{max})$ iterations to decide whether $P \cap (c^{\top} x \geq \beta) = \emptyset$ for some integer β . (Find a suitable initial ellipsoid and stopping value L)
- ii) Show that we can use binary search to find z^* with $\log(nc_{\text{max}})$ calls to the ellipsoid method.
- iii) Show how you can find an optimal solution x^* such that $c^{\top}x^*=z^*$ in polynomial time.