Discrete Optimization (Spring 2018)

Assignment 7

Problem 3 can be **submitted** until April 20 12:00 noon into the box in front of MA C1 563. You are allowed to submit your solutions in groups of at most three students.

Problem 1

Determine the dual program for the following linear program:

$$\begin{array}{llll} \min & 3x_1 + 2x_2 - 3x_3 + 4x_4 \\ & 2x_1 - 2x_2 + 3x_3 + 4x_4 & \leq & 3 \\ & x_2 + 3x_3 + 4x_4 & \geq & -5 \\ & 2x_1 - 3x_2 - 7x_3 - 4x_4 & = & 2 \\ & x_1 \geq 0 \\ & x_4 \leq 0 \end{array}$$

Solution:

After some simplifications, one obtains:

Problem 2

In the GitHub repository of the course, in the 'Programming' folder, you will find the file 'Simplex.py' which contains the code to run the simplex algorithm on non-degenerate linear programs in standard form. However, some code is missing. Complete the code by filling the gaps (indicated by underscores) and send it to igor@malinovic.epfl.ch.

Solution

The solution can be found in the GitHub repository of the course.

Problem 3 (\star)

Suppose you are given an oracle algorithm, which for a given polyhedron

$$P = \{ \tilde{x} \in \mathbb{R}^{\tilde{n}} : \tilde{A}\tilde{x} \le \tilde{b} \}$$

gives you a feasible solution or asserts that there is none.

Consider the LP $\max\{c^Tx : Ax \leq b, x \in \mathbb{R}^n\}$, and assume it is feasible and bounded. Show that one can obtain an optimal solution of the LP using a single call of the oracle algorithm on a suitable polyhedron. *Hint: Use duality theory!*

Solution:

The LP is feasible and bounded, thus an optimum solution must exist. Strong duality tells us that

the dual $\min\{b^Ty: A^Ty=c,\ y\geq 0\}$ is feasible and bounded. For optimal solutions x^* of the primal and y^* of the dual we have $b^Ty^*=c^Tx^*$.

Thus every point (x^*, y^*) of the polyhedron

$$c^{T}x = b^{T}y$$

$$Ax \leq b$$

$$A^{T}y = c$$

$$y \geq 0$$

is optimal. Hence with one oracle call for the polyhedron above we get an optimal solution of the LP.

Problem 4

Consider the following linear program:

max
$$x_1 + x_2$$

subject to $2x_1 + x_2 \le 6$
 $x_1 + 2x_2 \le 8$
 $3x_1 + 4x_2 \le 22$
 $x_1 + 5x_2 \le 23$

Show that (4/3, 10/3) is an optimal solution by using weak duality.

Solution:

The assignment (4/3, 10/3) has the objective function value of 14/3. In order to prove that it is optimal (via strong duality), we are going to form the dual LP, and find a feasible solution to the dual that achieves the same objective value. The dual is:

min
$$6y_1 + 8y_2 + 22y_3 + 23y_4$$

subject to $2y_1 + y_2 + 3y_3 + y_4 = 1$ (1)
 $y_1 + 2y_2 + 4y_3 + 5y_4 = 1$ (2)
 $y_1, y_2, y_3, y_4 \ge 0$

Thus, we are looking for a feasible dual solution such that $6y_1 + 8y_2 + 22y_3 + 23y_4 = 14/3$. By using Gaussian elimination on this constraint combined with (1) and (2) we get:

$$-4y_2 - 2y_3 - 7y_4 = -4/3,$$
$$-3y_2 - 5y_3 - 9y_4 = -1$$

and further

$$14/3y_3 + 5y_4 = 0.$$

Since $y_1, y_2, y_3, y_4 \ge 0$, we have that $y_3 = y_4 = 0$ and then $y_1 = y_2 = 1/3$. This is the desired feasible dual solution coinciding with the primal solution (4/3, 10/3), proving the optimality of the latter.

Problem 5

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ a bounded, non-empty polyhedron. Formulate a linear program that computes the largest ball inside P.

Solution:

A ball of radius r and center x is contained in P if and only if $x \in P$ and x has distance at least r from any hyperplane defining P. Hence we obtain the following linear program:

subject to
$$\frac{b_i - a_i x}{||a_i||} \ge r \quad \forall i = 1, \dots, m$$

 $Ax \le b$

where a_1, \ldots, a_m are the rows of A and $b = (b_1 \ldots b_m)^{\top}$.