Computer Algebra

Discussions from: May 20, 2014

Spring 2014

Assignment Sheet 7

Exercises marked with a \star can be handed in for bonus points. Because of the upcoming end of the semester, due date is May 27.

You can assume as known the following characterization of lattices: $\Lambda \subseteq \mathbb{R}^n$ is a lattice if and only if it is an *additive subgroup* of \mathbb{R}^n , i.e.

- $0 \in \Lambda$;
- $x + y \in \Lambda$ for each $x, y \in \Lambda$;
- $-x \in \Lambda$ for each $x \in \Lambda$;
- $\exists \epsilon > 0$ such that, for each $x \in \Lambda$, the ball centered at x with radius ϵ contains no lattice point other than x.

Exercise 1

Let $\Lambda \subset \mathbb{R}^n$ be a full-dimensional lattice and define the *dual lattice*

$$\Lambda^{\star} = \{ y \in \mathbb{R}^n \mid y^T x \in \mathbb{Z} \text{ for all } x \in \Lambda \}.$$

- 1. Prove that Λ^* is a lattice and that $(\Lambda^*)^* = \Lambda$.
- 2. Let B be a basis of Λ . Prove that B^{-1} is a basis of Λ^* .
- 3. Let $y \in \Lambda^*$ be arbitrary and consider the affine hyperplanes $H_k = \{x \in \mathbb{R}^n \mid y^T x = k\}$ for all $k \in \mathbb{Z}$. Prove that $\Lambda \subset \bigcup_{k \in \mathbb{Z}} H_k$.

Exercise 2

Let $K \subseteq \mathbb{R}^n$ be a convex body of volume $\operatorname{vol}(K) \ge k \cdot 2^n$ that is symmetric about the origin. Prove that K contains at least 2k nonzero integer points.

Exercise 3

In this exercise we will prove a central result in algorithmic geometry of numbers, known as *Flatness Theorem*. Given a convex body $K \subseteq \mathbb{R}^n$ and a direction $d \in \mathbb{Z}^n$, define the *width of K along d* to be

$$w_d(K) = \max\{d^T x : x \in K\} - \min\{d^T x : x \in K\}.$$

A *flat direction* for K is a nonzero direction that minimizes the quantity above, i.e. a vector $d \in \mathbb{Z}^n$ that realizes

$$w(K) = \min\{w_d(K) : d \in \mathbb{Z}^n \setminus \{0\}\}.$$

Of course, in general, w(K) depends on the specific K. The **Flatness Theorem** states that, when K has no integer point, w(K) can be upper bounded by a function depending only on n (and hence, not on the specific K under analysis):

 $\exists \omega : \mathbb{N} \to \mathbb{N}$ such that, for each convex body $K \subseteq \mathbb{R}^n$ with $K \cap \mathbb{Z}^n = \emptyset$, one has $w(K) \leq \omega(n)$.

We will prove the flatness theorem for the special case of K being an ellipsoid, and use an auxiliary result to deduce the more general case. An ellipsoid $E \subseteq \mathbb{R}^n$ is the image of the n-dimensional unit ball $B = \{x \in \mathbb{R}^n : ||x|| \le 1\}$ under an affine map.

- (a) Show that E can be written as $E = \{x \in \mathbb{R}^n : ||A(x-a)|| \le 1\}$ for some matrix $A \in \mathbb{R}^{n \times n}$ and vector $a \in \mathbb{R}^n$. When a = 0 in the representation above, we say that E is centered at the origin.
- (b) Show that the computation of a flat direction for E can be reduced to the shortest vector problem on the lattice $\Lambda(A^{-1}^T)$.
- (c) Show that $\Lambda(A^{-1}^T) = \Lambda^*(A)$.
- (d) Given a lattice $\Lambda \subseteq \mathbb{R}^n$, we define the *covering radius* to be the smallest α such that the family of balls centered at lattice points and having radius α cover all \mathbb{R}^n . The *packing radius* $\rho(\Lambda)$ is the supremum of the β such that no two balls centered at lattice points and having radius β intersect. Show that there exists a function $f: \mathbb{N} \to \mathbb{N}$ such that, for each lattice $\Lambda \subseteq \mathbb{R}^n$, $\mu(\Lambda) \cdot \rho(\Lambda^*) \leq f(n)$.
- (e) Prove the flatness theorem when *K* is an ellipsoid.
- (f) Assume as known the following result: **John's theorem:** Let $K \subseteq \mathbb{R}^n$ be a convex body. There exists an ellipsoid E and $a \in \mathbb{R}^n$ such that: E is centered at the origin; $E + a \supseteq K$; and $\frac{1}{n}E + a \subseteq K$. Use the previous result and the flatness theorem for ellipsoids to prove the flatness theorem for any convex body.

Exercise 4 (*)

Show the following result: For every $k \in \mathbb{N}$ and every convex body $K \subseteq \mathbb{R}^n$ with $|K \cap k\mathbb{Z}^n| = 1$, one has $w(K) \le 2k\omega(n)$, with ω as in the flatness theorem.

Exercise 5

Recall that we proved in class the following theorem 'almost completely' (LLL algorithm): Given a non-singular matrix $B \in \mathbb{Q}^{n \times n}$, where every entry is bounded in absolute value by some $M \in \mathbb{N}$, we can compute a vector $v \in \Lambda(B)$ in time polynomial in n and $\log M$, such that $\|v\| \leq 2^{\frac{n-1}{2}} \min_{w \in \Lambda(B) \setminus \{0\}} \|w\|$. Complete the proof by showing the following: At any stage of the LLL algorithm, all rational numbers involved have numerators and denominators of binary length at most $O(n \log nM)$.

¹Being traditional, we exclude the 0 from the set of natural numbers \mathbb{N} .