Computer Algebra

Discussions from: May 06, 2014

Spring 2014 Assignment Sheet 6

Exercises marked with a \star can be handed in for bonus points. Due date is May 20.

Exercise 1

Let $B \in \mathbb{Z}^{n \times n}$ consists of parwise orthogonal vectors. Prove that a shortest non-zero vector of $\Lambda(B)$ is the column of B of minimum norm.

Exercise 2

Show that, in Dirichlet's theorem on simultaneous approximation of reals, when Q is an integer we can strengthen condition $|\alpha_i - p_i/q| \le 1/Qq$ by replacing it with a strict inequality.

Exercise 3

Let $A \in \mathbb{Z}^{m \times n}$ be a matrix of full row rank. Let $A \cdot U = B$, where $U \in \mathbb{Z}^{n \times n}$ is unimodular and B is the HNF of A, i.e. B = (H|0) where $H \in \mathbb{Z}^{m \times m}$ is a lower-diagonal matrix with nonnegative entries, where each row i has a unique maximum element, and this element is in column i. In class we observed that B can be computed in polynomial time. Show that also U can be computed in polynomial time.

Exercise 4 (*)

Give a polynomial time algorithm for the following problem: given an integer matrix $A \in \mathbb{Z}^{m \times n}$ and a column vector $b \in \mathbb{Z}^{m \times n}$, find an integral solution to the system Ax = b, or deduce there exists none. Does the algorithm also work if we replace "=" with " \leq "?

Exercise 5

Consider three points $v_1, v_2, v_3 \in \mathbb{Z}^2$ that do not lie on the same line.

- a) Show the following: the triangle with vertices v_1 , v_2 , v_3 does not contain an integer point other than its vertices if and only if the matrix $(v_2 v_1, v_3 v_2)$ is unimodular.
- b) Show that the previous statement cannot be extended to \mathbb{R}^3 , providing linearly independent vectors v_1, v_2, v_3, v_4 such that $\text{conv}\{v_1, v_2, v_3, v_4\}$ does not contain an integer different from its vertices but $\det(v_2 v_1, v_3 v_1, v_4 v_1) \neq \pm 1$.

Exercise 6

Let $v_1, ..., v_n \in \mathbb{Z}^2$ and $P = \text{conv}\{v_1, ..., v_n\}$. Let A, I, and B be respectively the area, the number of integer points in the interior, and the number of integer points on the boundary of P. Prove that A = I + B/2 - 1.

Exercise 7 (*)

Implement the algorithm that computes the HNF of a given matrix (the standard one is ok, you do not need to implement the one that keep coefficients bounded).

Exercise 8

Recall that in class we showed that Minkwoski's theorem implies a bound on $2 \cdot \sqrt[n]{\det(\Lambda)/V_n}$ on the size of a shortest non-zero vector in a lattice. Prove that this bound is aymptotically equivalent to $\sqrt{\frac{2n}{\pi e}} \det(\Lambda)^{1/n} (n\pi)^{1/2n}$.

Exercise 9

Let

$$B = (b_1, ..., b_{i-1}, b_i, b_{i+1}, b_{i+2}, ..., b_n)$$

and

$$C = (b_1, ..., b_{i-1}, b_{i+1}, b_i, b_{i+2}, ..., b_n)$$

be two lattice bases. Notice that C originates from B via swapping the i-th and i+1-st column. Prove that B^* and C^* only differ in the i-th and i+1-st column. Show further that $\|b_i^*\|\cdot\|b_{i+1}^*\|=\|c_i^*\|\cdot\|c_{i+1}^*\|$ holds. What does this imply for $\det(B)$ and $\det(C)$? (B^* and C^* are the output of the Gram-Schmidt process with input B and C, respectively.)

Exercise 10

Let *p* be an odd prime. Prove that $(p-1)! \equiv -1 \pmod{p}$.