Computer Algebra

Spring 2013

Assignment Sheet 6

Exercises marked with a \star can be handed in for bonus points. Due date is May 21.

Exercise 1

Recall that in class we defined, for $k \in \mathbb{N}$

$$g_k = a_k g_{k-1} + g_{k-2};$$
 $h_k = a_k h_{k-1} + h_{k-2}$ with $g_{-1} = 1, g_{-2} = 0, h_{-1} = 0, h_{-2} = 1$

Show that for each $k \in \mathbb{N}$:

- $\frac{g_k}{h_k} = \langle a_0, ..., a_k \rangle;$
- $g_{k+1}h_k g_kh_{k+1} = (-1)^k$.

Exercise 2

Consider three points $v_1, v_2, v_3 \in \mathbb{Z}^2$ that do not lie on the same line.

- a) Show the following: the triangle with vertices v_1 , v_2 , v_3 does not contain an integer point other than its vertices if and only if the matrix $(v_2 v_1, v_3 v_2)$ is unimodular.
- b) Show that the previous statement cannot be extended to \mathbb{R}^3 , providing linearly independent vectors v_1, v_2, v_3, v_4 such that $\text{conv}\{v_1, v_2, v_3, v_4\}$ does not contain an integer different from its vertices but $\det(v_2 v_1, v_3 v_1, v_4 v_1) \neq \pm 1$.

Exercise 3 (*)

Let $v_1, ..., v_n \in \mathbb{Z}^2$ and $P = \text{conv}\{v_1, ..., v_n\}$. Let A, I, and B be respectively the area, the number of integer points in the interior, and the number of integer points on the boundary of P. Prove that A = I + B/2 - 1.

Exercise 4 (*)

Implement the algorithm that computes the HNF of a given matrix.

Exercise 5

Let

$$B = (b_1, ..., b_{i-1}, b_i, b_{i+1}, b_{i+2}, ..., b_n)$$

and

$$C = (b_1, ..., b_{i-1}, b_{i+1}, b_i, b_{i+2}, ..., b_n)$$

be two lattice bases. Notice that C originates from B via swapping the i-th and i+1-st column. Prove that B^* and C^* only differ in the i-th and i+1-st column. Show further that $\|b_i^*\|\cdot\|b_{i+1}^*\|=\|c_i^*\|\cdot\|c_{i+1}^*\|$ holds. What does this imply for $\det(B)$ and $\det(C)$? (B^* and C^* are the output of the Gram-Schmidt process with input B and C, respectively.)

Exercise 6

Let *p* be an odd prime. Prove that $(p-1)! \equiv -1 \pmod{p}$.