Prof. Eisenbrand October 28, 2016

Assistant: Manuel Aprile

Combinatorial Optimization (Fall 2016)

Assignment 5

Deadline: November 4 10:00, into the right box in front of MA C1 563.

Exercises marked with a \star can be handed in for bonus points.

Problem 1

In class we saw that we can decide whether a graph G has a perfect matching or not looking at the determinant of the Tutte matrix A_G , which is a polynomial with variables $x_e, e \in E(G)$. In this exercise we will see a randomized approach to check whether a polynomial is identically 0 or not. This algorithm would then allow us to decide whether G has a perfect matching or not.

1. Prove the following (Schwartz-Zippel Lemma): let p be a polynomial in variables x_1, \ldots, x_n of total degree d. Assume p is not identically 0, and let $S \subset \mathbb{R}$ be any finite set. If y_1, \ldots, y_n are chosen independently and uniformly at random from S, then:

$$\Pr[p(y_1, \dots, y_n) = 0] \le \frac{d}{|S|}$$

Hint: use induction on n.

2. Use part 1. to derive a randomized algorithm that takes a polynomial p as an input and returns $p \equiv 0$ or $p \not\equiv 0$. The algorithm should have one-sided error: if it returns $p \not\equiv 0$, then it is correct; if it returns $p \equiv 0$, then the probability that $p \not\equiv 0$ can be made arbitrarily small.

Solution:

1. The proof is by induction on n. If n = 1, $p(x_1)$ has at most d roots. Therefore $\mathbb{P}(p(x_1^*) = 0) \le \frac{d}{|S|}$.

Suppose n > 1. We write p as a polynomial in x_n , with coefficients in $\mathbb{R}[x_1, \dots, x_{n-1}]$:

$$p(x_1, \dots, x_n) = \sum_{i=0}^k q_i(x_1, \dots, x_{n-1})x_n^i$$

with $k \leq d, q_k \not\equiv 0$. Let E_1 be the event that $p(y_1, \ldots, y_n) = 0$, and E_2 be the event that $q_k(y_1, \ldots, y_{n-1}) = 0$. Note that since q_k has degree at most d - k, by induction $\mathbb{P}(E_2) \leq \frac{d - k}{|S|}$. Now:

$$\mathbb{P}(E_1) = \mathbb{P}(E_1 \land E_2) + \mathbb{P}(E_1 \land \neg E_2) \le \mathbb{P}(E_2) + \mathbb{P}(E_1 \land \neg E_2) \le \frac{d - k}{|S|} + \mathbb{P}(E_1 | \neg E_2) \cdot \mathbb{P}(\neg E_2) \le \frac{d - k}{|S|} + \mathbb{P}(E_1 | \neg E_2) \le \frac{d - k}{|S|} + \frac{k}{|S|} = \frac{d}{|S|}$$

where in the last inequality we have used the fact that, if $\neg E_2$ holds, the coefficient of x_n^k is not zero, hence p is a polynomial of degree k in x_n .

2. The algorithm chooses any S such that $|S| \ge 2\deg(p)$, then samples M points independently and uniformly at random from S^n , and evaluates p in those points. If for one of these points $y \ p(y) \ne 0$, then it returns $p \ne 0$ (note that in this case the answer is correct). If for all the sampled points p evaluates to 0, then the algorithm returns $p \equiv 0$. We now argue that the probability of error is small. Thanks to part 1, if $p \ne 0$, the probability that a random point from S is a root of f is less than 1/2. Hence, the probability that this happens for each of the M points is at most $\frac{1}{2M}$, which can be made arbitrarily small.

Problem 2 (\star)

- 1. Prove that if M_1 and M_2 are matchings of G and $|M_2| > |M_1|$ then there exists at least $|M_2| |M_1|$ vertex-disjoint M_1 -augmenting paths.
- 2. Prove that if M is a matching of G that is not maximum cardinality then there exists a maximum cardinality matching M^* such that every vertex covered by M is also covered by M^* . Hint: use part 1.

Solution:

- 1. Consider $M_1\Delta M_2$. This is the union of alternating paths and even cycles. For each component H of $M_1\Delta M_2$ if $|E(H)\cap M_2|>|E(H)\cap M_1|$ then H is an M_1 -augmenting path and $|E(H)\cap M_2|=|E(H)\cap M_1|+1$. Hence we must have at least $|M_2|-|M_1|$ such augmenting paths. And since each of them is a component in $M_1\Delta M_2$ they must be vertex disjoint.
- 2. Let M be a matching of G and suppose that M is not maximum cardinality. Let M^* be a maximum cardinality matching. Then since $|M^*| > |M|$ by part (i) we can find an M-augmenting path. Flipping the edges of M along this path we obtain a matching M' where |M'| = |M| + 1 and M' covers every vertex that M covers. We then repeat this process until $|M'| = |M^*|$.

Problem 3 (*)

Suppose you are given an oracle that given a graph G, tells you whether G has a perfect matching or not. Show how to use this oracle to determine the maximum cardinality matching of a graph G(V, E).

Hint: you should modify the graph at each call of the oracle. The total number of calls should be at most |V| + |E|.

Solution:

For $k=0,\ldots,n=|V|$, let G+k be the graph obtained by adding to G k dummy vertices joint to all the vertices of G. Since a matching has an even number of nodes, in what follows we only consider values of k of the same parity as n. Notice that G+k has a perfect matching if and only if G has a matching of size $\frac{n-k}{2}$. We call the oracle on G+k, starting with k=0 (or 1, depending on the parity of n) and increasing it, until G+k has a perfect matching. For the minimum such k, we know that there is a matching M of size $\frac{n-k}{2}$ and it has maximum cardinality. Now to find such a matching, we remove one edge $e \in E$ from G+k at time and we ask the oracle if this graph has a perfect matching: if it doesn't, then $e \in M$, and we can delete e and its endpoints and continue. If it does, then $e \notin M$ and we delete just e and continue. In this way we will find M. The total number of calls is at most $k+|E| \le n+|E|$.