Discussions from: November 22, 2010

Combinatorial Optimization

Fall 2010

Assignment Sheet 5

Exercise 1

Let G = (V, E) be an undirected graph with edge weights $c : E \to \mathbb{R}_+$. Consider the recursive algorithm to compute a Gomory-Hu tree. Modify it such that instead of taking a minimum $\operatorname{cut} \delta(W)$ among all cuts separating at least two vertices of R, it instead chooses two arbitrary vertices $s, t \in R$ and takes a minimum s-t $\operatorname{cut} \delta(W)$. The rest of the algorithm proceeds unchanged.

- 1. Prove that $\delta(W)$ is a minimum r'-r'' cut. *Hint*: You can assume by contradiction that there exists a lighter cut and then consider
 - the s-r' path in T' (or the t-r'' path in T'').
- 2. Prove that the modified algorithm computes a Gomory-Hu tree.

Exercise 2 (*)

Let G = (V, E) be an undirected graph with requirements $r : E \to \mathbb{R}_+$. The *minimum-require-ment spanning tree problem* is the problem of finding a spanning tree T on the vertices V such that $\sum_{e \in E} r(e) \cdot d_T(e)$ is minimized, where $d_T(e)$ is the distance (number of edges) between the endpoints of e in the tree T.

- 1. For any edge $f \in T$, let $R_T(f)$ denote the weight of the cut in G induced by the two components of $T \setminus \{f\}$. Show that $\sum_{e \in E} r(e) \cdot d_T(e) = \sum_{f \in T} R_T(f)$.
- 2. Let T and T' be spanning trees on V. Show that there exists a bijection $\phi: T \to T'$ between the edges such that for all $e \in T$, $\phi(e)$ is an edge on the unique path in T' connecting the endpoints of e.
- 3. Show that a Gomory-Hu tree is an optimal solution to the minimum-requirement spanning tree problem.

Remark: This problem is motivated by a network design question. The requirements indicate desired bandwidth between sites, and the goal is to satisfy them with a tree-shaped network such that the total capacity of the network is as small as possible to save costs.

Exercise 3

Let *E* be a finite set and let \mathscr{I} be a non-empty collection of subsets of *E* such that $I \in \mathscr{I}$ and $J \subseteq I$ implies $J \in \mathscr{I}$. Prove that the following conditions are equivalent:

- 1. if $I, J \in \mathcal{I}$ and |J| > |I|, then $I \cup \{e\} \in \mathcal{I}$ for some $e \in J \setminus I$;
- 2. if $I, J \in \mathcal{I}$ and |J| = |I| + 1, then $I \cup \{e\} \in \mathcal{I}$ for some $e \in J \setminus I$;
- 3. if $I, J \in \mathcal{I}$ and $|I \setminus J| = 1$, $|J \setminus I| = 2$, then $I \cup \{e\} \in \mathcal{I}$ for some $e \in J \setminus I$.

Exercise 4 (*)

Let *E* be a finite set that is partitioned into sets $E = E_1 \cup ... \cup E_r$ and define a system

$$\mathcal{I} := \{ S \subset E \mid |S \cap E_j| \le 1 \text{ for all } j = 1 \dots r \}.$$

of independent sets. Show that (E, \mathcal{I}) is a matroid. What is the rank of this matroid? Give a simple description of the bases of the matroid.

Remark: This type of matroid is called a partition matroid.

Exercise 5

Let D = (V, A) be a directed graph. A Hamiltonian s-t-path $P \subset A$ is a simple path from s to t that contains every vertex of the graph. A Hamiltonian cycle $C \subset A$ is a simple cycle that contains every vertex of the graph.

- 1. Let $s, t \in V$ be distinct vertices. Find an intersection M of three matroids so that Hamiltonian s-t-paths in D are exactly the elements of M with |V| 1 elements.
- 2. Find an intersection M of three matroids so that Hamiltonian cycles in D are exactly the elements of M with |V| elements.
- 3. Conclude that, given an oracle that can optimize over arbitrary matroid intersections, we can find a Hamiltonian cycle in *D*. If the oracle supports weights on the edges, this can be used to solve TSP.