Computer Algebra

Spring 2013 Assignment Sheet 4

Exercises marked with a \star can be handed in for bonus points. Due date is April 23.

Exercise 1

Recall the *Sieve of Eratosthenes*, that detects which integers smaller or equal to an input n are prime (at the end of the algorithm, a number $t \in [2, n]$ is prime iff A[t] = 1).

```
INPUT: integer n \in \mathbb{N}, OUTPUT: vector A[2,...,n]. FOR k=2 to n SET A[k]=1 FOR k=2 to \lfloor n/2 \rfloor IF A[k]=1 SET i=2k WHILE i \leq n SET A[i]=0 SET i=i+k
```

- RETURN A[2,...,n]
- a) *Merten's Theorem* is the following result: for each $n \in \mathbb{N}$, $\sum_{p \le n: p \text{ is a prime }} \frac{1}{p} = \log(\log n) + O(1)$. Assuming the previous, show that the running time of the Sieve of Eratosthenes is $O(n\log(\log n))$.
- b) Implement the sieve of Eratosthenes.

Exercise 2

Show the following: for each $\epsilon > 0$, there exists $c \in \mathbb{R}_+$, $N \in \mathbb{N}$ such that, for each $n \ge N$, one has $\pi((1+\epsilon)n) - \pi(n) \ge c\frac{n}{\log n}$, where for $n \in \mathbb{N}$ we have $\pi(n) = \{p \le n : p \text{ is prime}\}.$

Exercise 3

Let $A \in \mathbb{Q}^{n \times n}$. Denote the columns of A by a_1, \ldots, a_n . Let B be an upper bound on the absolute values of entries in A.

- 1. Show the Hadamard bound $|\det(A)| \le \prod_{j=1}^n |a_j|_2$, where $|\cdot|_2$ is the Euclidean norm. *Hint:* Do you remember the Gram-Schmidt orthogonalization process?
- 2. Derive from this that $|\det(A)| \le n^{n/2}B^n$. Leibniz formula states that $|\det(A)| \le B^n n!$. How does it compare to Hadamard bound?

Exercise 4 (*)

Show that, using Gaussian elimination, one can compute a solution to the system Ax = b, $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, or assert that none exists, in polynomial time in the encoding length of A and b.

Exercise 5

Let $M \in \mathbb{R}^{m \times n}$, and M' be the matrix obtained after performing an elementary row operation on M

- a) Show that there exists an invertible matrix X such that M' = XM.
- b) Let B be the output of Gaussian elimination when applied to A. From a), one immediately checks that B = XA for some invertible matrix X. Modify the Gaussian elimination algorithm as to compute X.

Exercise 6

Let

$$A = \begin{pmatrix} 1 & 0 & -2 \\ 2 & -1 & 1 \\ 0 & 2 & 2 \end{pmatrix}$$

- 1. Use Gaussian elimination modulo p to compute the determinant of A modulo p, for p = 3, 5, 7.
- 2. Use the Leibniz bound to show that $2|\det(A)|+1 \le 105$. Conclude that you can directly obtain $\det(A)$ from the previous results.

Exercise 7

Let T(G) be the Tutte matrix of a graph G, and v(G) the cardinality of the maximum matching of G.

- a) Given a graph G, show that there exists a subgraph H of G with a perfect matching such that $2\nu(G) = 2\nu(H) = \operatorname{rank}(T(H)) = \operatorname{rank}(T(G))^{1}$.
- b) Give an efficient randomized algorithm that computes the cardinality of a maximum matching of a graph with probability at least 1/2.

¹Note that this does not immediately implies that we can compute v(G), because we still have to show how to compute the rank of a matrix with indeterminate entries.