Computer Algebra

Spring 2014 Assignment Sheet 2

Discussions from: March 04, 2014

Exercises marked with a \star can be handed in for bonus points. Due date is March 18.

Exercise 1

Let $f: \mathbb{N} \to \mathbb{R}_+$ be a function with $f(a) + f(b) \le f(a+b)$. Show that $f(1) + f(2) + f(4) + f(8) + \dots + f(n) = O(f(n))$.

Exercise 2

Let $x \in \mathbb{R}$ and $n \in \mathbb{N}_{\geq 1}$. Show that $\lfloor \lfloor x \rfloor / n \rfloor = \lfloor x / n \rfloor$; in particular, $\lfloor \lfloor a / b \rfloor / c \rfloor = \lfloor a / b c \rfloor$ for all positive integers a, b, c.

Exercise 3

Let $a, b \in \mathbb{N}$ be odd numbers with $a - b = 2^k$ for some $k \in \mathbb{N}$. Show that a and b are coprime.

Exercise 4

Let N = pq, where $p \neq q$ are primes. Assuming that the roots of a polynomial can be computed efficiently, show that given only N and $\varphi(N)$, one can compute the prime factors p and q efficiently.

Exercise $5 (\star)$

Let (g, x, y) be the output of the Extended Euclidean Algorithm on input a, b. Show that, if $a \ge b > 0$, we have $|x| \le b/g$ and $|y| \le a/g$.

Exercise 6

In this exercise, you have to show how to efficiently implement a general version of the Chinese remainder theorem. More formally, prove the following. Suppose we are given relatively prime numbers N_1, \ldots, N_t and numbers a_1, \ldots, a_t such than $0 \le a_i < N_i$. Moreover, let $N = \prod_i N_i$. Show that in time $O(len^2(N))$ one can compute the unique integer a < N such that $a \equiv a_i \mod N_i$ for $i = 1 \ldots, t$.

Exercise $7 (\star)$

The RSA system can be easily attacked if the public or private key is not chosen carefully. Suppose for example that the same message $m < N_1$ is encoded with the public keys $(3, N_i)$

for i = 1, 2, 3, with $N_1 < N_2 < N_3$ being relatively prime. Let b_1, b_2, b_3 be the encrypted messages. Show how to efficiently deduce m from the knowledge of b_1, b_2, b_3 and of the public keys.

Exercise 8

Implement the fast modular exponentiation function.

Exercise 9 (*)

Recall the Fibonacci numbers: F(0) = 0, F(1) = 1, and F(n) = F(n-1) + F(n-2) for $n \ge 2$. Consider the following two algorithms for computing the n-th Fibonacci number.

$$\begin{aligned} & \text{Fib}_1(n) \colon & \text{input} = n \in \mathbb{Z}_+ \\ & \text{if } n == 0 \text{ or } n == 1 \\ & \text{return n} \end{aligned}$$

$$& \text{return } \text{Fib}_1(n-1) + \text{Fib}_1(n-2)$$

$$& \text{Fib}_2(n) \colon & \text{input} = n \in \mathbb{Z}_+ \end{aligned}$$

$$& \text{Let } A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1}$$

$$& \text{Return } a$$

Note: The computation on *A* is left intentionally vague. How can this be done efficiently?

- a) Prove they are correct.
- b) Estimate their running time.
- c) Implement them and compare their running time for different values of n.