Discrete Optimization (Spring 2018)

Assignment 1

Problem 8 can be **submitted** until March 2 12:00 noon, please send the source code in C++ to **igor.malinovic@epfl.ch**. You are allowed to submit your solutions in groups of at most three students.

Problem 1

Provide a certificate (as in Theorem 0.1 in the lecture notes) of the unsolvability of the linear equation

$$\begin{pmatrix} 2 & 1 & 0 \\ 5 & 4 & 1 \\ 7 & 5 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$$

Problem 2

Show the "if" direction of the Farkas' lemma: given $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$, if there exist a $\lambda \in \mathbb{R}^m_{\geq 0}$ such that $\lambda^{\top} A = 0$ and $\lambda^{\top} b = -1$, then the system $Ax \leq b$ is unfeasible.

Problem 3

Consider the following linear program:

The solution (x,y) = (8/5,3/5) satisfies the both constraints and has the objective value 11/5. Provide a certificate that this is an optimal solution.

Problem 4

Find the binary representation of 235.

Problem 5

Show that the binary representation with leading bit one of a positive natural number is unique.

Problem 6

Show that there are *n*-bit numbers $a, b \in \mathbb{N}$ such that the Euclidean algorithm on input a and b performs $\Omega(n)$ arithmetic operations. *Hint: Fibonacci numbers*

Problem 7

Suppose we are given three $n \times n$ matrices $A, B, C \in \mathbb{Z}^{n \times n}$ and we want to test whether $A \cdot B = C$ holds. We could multiply A and B and then compare the result with C. This would amount to running time (number of arithmetic operations) of $O(n^3)$ with the standard matrix-multiplication algorithm.

We now show how to perform an efficient randomized test. Suppose that you can draw a vector $v \in \{0,1\}^n$ i.i.d. at random in time O(n). The idea is then to compute the product $B \cdot v$ and then the product $A \cdot (B \cdot v)$ and afterwards $C \cdot v$, all in time $O(n^2)$. Show the following.

a) If
$$A \cdot B \neq C$$
, then $P(A \cdot (B \cdot v) = C \cdot v) \leq 1/2$.

- b) Let $v_1, \ldots, v_k \in \{0, 1\}^n$ be i.i.d. at random and suppose that $A \cdot B \neq C$. The probability of the event: $A \cdot (B \cdot v_i) = C \cdot v_i$ for each $i = 1, \ldots, k$ is bounded by $1/2^k$.
- c) Conclude that there is an algorithm that runs in time $O(k \cdot n^2)$ which tests whether $A \cdot B = C$ holds. The probability that the algorithm gives the wrong result is bounded by $1/2^k$.

Problem 8 (*)

Let a and b be two natural numbers with binary representations a_0, \ldots, a_{l-1} and b_0, \ldots, b_{l-1} , respectively. Given that a > b design an algorithm which outputs c = a - b in its binary representation with leading bit one. Additionally, we require this algorithm to have the running time of O(l) basic operations. The algorithm shall be implemented in C++.