Combinatorial Optimization

Fall 2010

Assignment Sheet 1

Exercise 1

Show that the dual of the linear program $\max\{c^Tx\colon x\in\mathbb{R}^n,\,Ax\leq b,\,x\geq 0\}$ for $A\in\mathbb{R}^{m\times n},b\in\mathbb{R}^m$ and $c\in\mathbb{R}^n$ can be interpreted as the linear program $\min\{b^Ty\colon y\in\mathbb{R}^m,\,A^Ty\geq c,\,y\geq 0\}$.

Hint: Understand the primal as $\max\{c^Tx: x \in \mathbb{R}^n, \binom{A}{-I}x \leq \binom{b}{0}\}$, and re-interpret the dual of this LP.

Exercise 2

We could not finish the proof the following theorem during the last lecture.

Theorem. A non-empty set $F \subseteq \mathbb{R}^n$ is a face of $P = \{x \in \mathbb{R}^n : Ax \le b\}$ if and only if $F = \{x \in P : A'x = b'\}$ for a subset $A'x \le b'$ of $Ax \le b$.

Notice that this sub-system $A'x \le b'$ could be "empty". Here is the proof. However, a few details are missing that you should fill in.

Proof. Suppose that $F = \{x \in P : A'x = b'\}$. Consider the vector $c = 1^T A'$ and $\delta = 1^T b'$. The inequality $c^T x \le \delta$ is valid for P. It is satisfied with equality by each $\mathbf{x} \in F$. If $x' \in P \setminus F$, then there exists an inequality $a^T x \le \beta$ of $A'x \le b'$ such that $a^T x' < \beta$ and consequently $\mathbf{c}^T \mathbf{x}' < \delta$. This shows $\{x \in P : A'x = b'\} = \{x \in P : c^T x = \delta\}$ and thus that F is a face.

On the other hand, if F is a face, then there exists a valid inequality $c^T x \le \delta$ of P such that $F = \{x \in P : c^T x = \delta\}$. If c = 0, then clearly F = P and the assertion follows. If $c \ne 0$, then since F is non-empty, linear programming duality implies

$$\delta = \max\{c^T x \colon Ax \le b\} = \min\{b^T \lambda \colon A^T \lambda = c, \lambda \ge 0\}.$$

Thus there exists a $\lambda^* \in \mathbb{R}^m_{\geq 0}$ such that $c = \lambda^{*T} A$ and $\delta = \lambda^{*T} b$. Let $A'x \leq b'$ be the subsystem of $Ax \leq b$ which corresponds to strictly positive entries of λ^* . One has $\mathbf{F} = \{\mathbf{x} \in \mathbf{P} : \mathbf{A}'\mathbf{x} = \mathbf{b}'\}$.

Provide a formal proof of the claims in **boldface**.

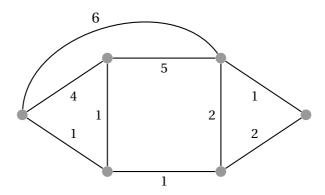
Exercise 3

Determine a maximum weight matching of the graph below. Provide of proof of optimality

by determining a feasible dual solution to the linear program

$$\begin{array}{lll} \max & \sum_{e \in E} w(e) x(e) \\ v \in V : & \sum_{e \in \delta(v)} x(e) & \leq & 1 \\ \bigcup_{|U| \text{ odd}} : & \sum_{e \in E(U)} x(e) & \leq & \lfloor |U|/2 \rfloor \\ e \in E : & 0 & \leq & x(e) \end{array}$$

whose objective value coincides with the weight of your matching.



Exercise 4 (*)

Show the following: A face F of $P = \{x \in \mathbb{R}^n : Ax \le b\}$ is inclusion-wise minimal if and only if it is of the form $F = \{x \in \mathbb{R}^n \mid A'x = b'\}$ for some subsystem $A'x \le b'$ of $Ax \le b$.