Discussions from: November 11, 2015

Combinatorial Optimization

Fall 2015 Assignment Sheet 9

★ exercises can be handed in for bonus points. Due date is Friday November 20.

Let G = (V, E) be a connected graph.

Exercise 1

Let M_1, M_2 be two maximal matchings in G. Prove that $|M_1| \le 2|M_2|$. (Recall that a matching of G is maximal if it is not properly contained in any other matching of G.).

Exercise 2

A matching *M* of *G* is perfect if it covers every vertex of *G*. Prove that if *G* is a tree then it has at most one perfect matching.

Exercise 3

Consider the 8×8 chessboard. Can you use tiles of size 2×1 to cover all the squares of the board except two diagonally opposite corners? [Hint: think of a perfect matching in a bipartite graph].

Exercise 4 (*)

- (i) Prove that if M_1 and M_2 are matchings of G and $|M_2| > |M_1|$ then there exists at least $|M_2| |M_1|$ vertex-disjoint M_1 -augmenting paths.
- (ii) Prove that if M is a matching of G that is not maximum cardinality then there exists a maximum cardinality matching M^* such that every vertex covered by M is also covered by M^* . [Hint: use part (i)]