Combinatorial Optimization

Fall 2015

Assignment Sheet 8

★ exercises can be handed in for bonus points. Due date is Friday November 13.

Exercise 1

Show that the problem of computing the longest path in an undirected graph can be formulated as the intersection of three matroids.

Exercise 2 (*)

Let $P \subseteq \mathbb{R}^n$ be a full dimensional polytope that contains the origin in its interior. Let $x \in \mathbb{R}^n$. Prove that x is a vertex of P if and only if $\{y \in \mathbb{R}^n | x^\top y \le 1\}$ defines a facet of P^0 .

Exercise 3

Let C be the square with corners at (1,1),(1,-1),(-1,1),(-1,-1). Draw the polar of C.

Exercise 4

Let G = (V, E) be a graph. The forest polytope associated with G is

$$P = \left\{ x \in \mathbb{R}_{\geq 0}^{|E|} : \ x(E[S]) \le |S| - 1 \ \forall \ S \subseteq V, S \ne \emptyset \right\}$$

Assume you have access to an oracle that given an edge weighted directed graph H and two nodes $s, t \in V(H)$ finds a minimum weight directed s - t cut in H. Show how to solve the separation problem for P in polynomial time.