Discussions from: October 14, 2015

Combinatorial Optimization

Fall 2015 Assignment Sheet 5

Exercises marked with \star can be handed in for bonus points. Due date is Friday October 23.

Exercise 1

Prove that a spanning connected subgraph of *G* is a spanning tree if and only if it has |V| - 1 edges.

Exercise 2

In the MST problem we want to find a spanning tree H = (V, T) of G that minimizes $\sum_{e \in T} w(e)$. Suppose we want to minimize instead $\max_{e \in T} w(e)$. Prove that if H = (V, T) is an MST of G then H is also an optimal solution for our new problem.

Exercise 3

Let X be a finite set and \mathcal{I} a collection of subsets of X satisfying

- (i) $\emptyset \in \mathscr{I}$
- (ii) If $Y \in \mathcal{I}$ and $Z \subseteq Y$ then $Z \in \mathcal{I}$.

Show that the following two conditions are equivalent

- 1. If $Y, Z \in \mathcal{I}$ and |Y| < |Z| then $Y \cup \{x\} \in \mathcal{I}$ for some $x \in Z \setminus Y$
- 2. For any subset *Y* of *X* any two bases of *Y* have the same cardinality.

Exercise 4 (*)

Let G = (V, E) be a graph.

- (i) Let $\mathscr{I} = \{ M \subseteq E : M \text{ is a matching} \}$. Show that (E, \mathscr{I}) is not a matroid.
- (ii) Let $\mathscr{I}' \subseteq 2^V$ be defined as follows: for $U \subseteq V$ we have $U \in \mathscr{I}'$ if and only if there exists a matching in G that covers all vertices of U. Show that (V, \mathscr{I}') is a matroid.