Combinatorial Optimization

Fall 2015

Assignment Sheet 4

Exercises marked with \star can be handed in for bonus points. Due date is Friday October 16.

Exercise 1

Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix and $b \in \mathbb{R}^n$ a vector. In class we defined the ellipsoid E(A, b) as the imagine of the unit ball under the linear mapping t(x) = Ax + b. Show that

$$E(A, b) = \left\{ x \in \mathbb{R}^n : (x - b)^{\top} A^{-\top} A^{-1} (x - b) \le 1 \right\}$$

Exercise 2

Draw
$$E(A, b)$$
 for $A = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Exercise 3

Show that the unit simplex $\Delta = \text{conv}\{0, e_1, \dots, e_n\} \subset \mathbb{R}^n$ has volume $\frac{1}{n!}$.

Exercise 4 (*)

Let $P = \{x \in \mathbb{R}^n : Ax \le b\}$ be a full dimensional 0/1 polytope and $c \in \mathbb{Z}^n$. We will show how we can use the ellipsoid method to solve the optimization problem $\max\{c^\top x : x \in P\}$.

Define $z^* := \max\{c^\top x : x \in P\}$ and $c_{\max} := \max\{|c_i| : 1 \le i \le n\}$.

- (i) Show that the ellipsoid method requires $O(n^3 \log(n) c_{max})$ iterations to decide whether $P \cap (c^\top x \ge \beta) = \emptyset$ for some integer β . (Find a suitable initial ellipsoid and stopping value L)
- (ii) Show that we can use binary search to find z^* with $\log(nc_{\text{max}})$ calls to the ellipsoid method.
- (iii) Show how you can find an optimal solution x^* such that $c^T x^* = z^*$ in polynomial time.