Discussions from: December 9, 2015

Combinatorial Optimization

Fall 2015

Assignment Sheet 13

★ exercises can be handed in for bonus points. Due date is Friday December 18.

Given $a, c \in \mathbb{Z}^n$ and $b \in \mathbb{Z}$ recall the maximum knapsack problem:

$$(P) \quad \max c^{\top} x$$
$$a^{\top} x \le b$$
$$x \in \{0, 1\}^{n}$$

where we can assume wlog that $c, a \ge 0$ and $||a||_{\infty} \le b$.

Exercise 1

Apply the algorithm seen in class to the following instance.

max
$$x_1 + 2x_2 + 2x_3 + 3x_4$$

s.t. $3x_1 + 5x_2 + 7x_3 + 6x_4 \le 14$
 $x \in \{0, 1\}^4$

Exercise 2

Consider the modified problem

$$(P') \qquad \max \hat{c}^{\top} x$$
$$a^{\top} x \le b$$
$$x \in \{0, 1\}^n$$

where $\hat{c}_i = \lfloor c_i/M \rfloor$ for all $i \in \{1, \dots, n\}$ for some $M \in \mathbb{R}_{\geq 0}$. Let x' be an optimal solution to P'. Give an example where $cx' < ||c||_{\infty}$.

Exercise 3 (★)

Show that one can solve P in time polynomial in n and $||a||_{\infty}$. (Hint: formulate as a longest path problem in an acyclic graph).

Exercise 4

Show that for each $n \in \mathbb{N}$, there is a graph with 2n nodes where the algorithm seen in class for vertex cover gives a solution that is exactly 2-approximated.