Convexity

Prof. Friedrich Eisenbrand Christoph Hunkenschröder

Assignment Sheet 5 - Solutions

October 27, 2016

Exercise 1

Let $K \subseteq \mathbb{R}^n$ be a closed convex set and $p \in \mathbb{R}^n \setminus K$.

Prove that there exists a *unique* point $x \in K$ minimizing the distance to p, i.e. $||x - p|| \le ||y - p||$ for all $y \in K$.

Solution:

As *K* is closed, let $x, y \in K$ be two points with $||x - p|| = ||y - p|| \le ||z - p||$ for all $z \in K$. By convexity, $\frac{1}{2}x + \frac{1}{2}y \in K$ as well. First notice

$$\left(\frac{1}{2}x + \frac{1}{2}y - p\right)^{T}(x - y) = \underbrace{\frac{1}{2}||x - p||^{2} - \frac{1}{2}||y - p||^{2}}_{=0} + \frac{1}{2}(y - p)^{T}(x - p) - \frac{1}{2}(x - p)^{T}(y - p) = 0.$$

We know $||x - p|| \le ||\frac{1}{2}(x + y) - p||$ by choice of x and y. On the other hand we have

$$||x-p||^2 = ||\frac{1}{2}(x+y)-p+\frac{1}{2}(x-y)||^2 = ||\frac{1}{2}(x+y)-p||^2 + ||\frac{1}{2}(x-y)||^2.$$

But this implies x = y, hence the closest point is unique.

Exercise 2

Let $K \subset \mathbb{R}^d$ be a compact convex body with a non-empty interior and suppose you are given E_{in} , the ellipsoid of largest volume contained in K.

Show how to compute a vector $u \in \mathbb{Z}^d$ s.t. $\max_{x,y \in K} u^{\mathsf{T}}(x-y) \leq d \cdot w(K)$ by one shortest lattice vector computation, where w(K) is defined to be

$$w(K) = \min_{u \in \mathbb{Z}^d \setminus \{0\}} \max_{x,y \in K} u^{\mathsf{T}}(x - y)$$

Solution:

Suppose the ellipsoid E_{in} is generated by $A \in \mathbb{R}^{d \times d}$ and $b \in \mathbb{R}^d$. Then for any vector $u \in \mathbb{Z}^d \setminus \{0\}$ we have that

$$\max_{x,y,\in K} u^{\mathsf{T}}(x-y) \le \max_{x,y\in E_{out}} u^{\mathsf{T}}(x-y) = d \max_{x,y\in E_{in}} u^{\mathsf{T}}(x-y)$$

Note that

$$\max_{x,y \in E_{in}} u^{\mathsf{T}}(x-y) = \max_{x,y \in B_1^d} u^{\mathsf{T}}(Ax + b - Ay - b) = \max_{x,y \in B_1^d} (A^{\mathsf{T}}u)^{\mathsf{T}}(x-y) = 2\|A^{\mathsf{T}}u\|$$

In particular, $A^{\dagger}u \in \Lambda(A)$, and so in one shortest vector computation we get $u \in \mathbb{Z}^d \setminus \{0\}$ minimizing the quantity $||A^{\dagger}u||$. For this u we have

$$\max_{x,y \in E_{in}} u^{\mathsf{T}}(x - y) = \min_{u \in \mathbb{Z}^d \setminus \{0\}} \max_{x,y \in E_{in}} u^{\mathsf{T}}(x - y) = w(E_{in}) \le w(K)$$

so in fact we have

$$\max_{x,y \in K} u^{\mathsf{T}} (x - y) \le d \cdot w(K)$$

as required.

Exercise 3 [*]

Two sets $X, Y \subseteq \mathbb{R}^n$ are called *strictly separable* if there is a hyperplane $a^T x = b$ such that $a^T x < b$ for all $x \in X$ and $a^T y > b$ for all $y \in Y$.

Prove that two disjoint closed balls $B(z_1, r_1), B(z_2, r_2) \subseteq \mathbb{R}^n$ are strictly separable.

Prove or disprove the following statement: Any two disjoint closed convex sets are strictly separable.

Solution:

The first part. Write $d = ||z_2 - z_1|| > r_1 + r_2$, $g = (z_2 - z_1)$ and define

$$z := z_1 + \frac{d + r_1 - r_2}{2d}g = z_2 + \frac{d - r_1 + r_2}{2d}(-g)$$

to be the middle point between the balls (not the middle point between the centers). We claim that the hyperplane $g^T x = g^T z$ separates the ball. Any point on $\partial B(z_1, r_1)$ can be written as $z_1 + r_1 e$, where e is a vector of unit length. Calculating

$$g^{T}(z_{1} + r_{1}e) \leq g^{T}z_{1} + r_{1}g^{T}\frac{g}{d}$$

$$< g^{T}z_{1} + \frac{2r_{1} + d - r_{1} - r_{2}}{2}g^{T}\frac{g}{d}$$

$$= g^{T}z$$

shows $g^T x < g^T z$ for all $x \in B(z_1, r_1)$, where we used $0 < d - r_1 - r_2$. By the symmetric characterisation of z, the same calculation shows $g^T x > g^T z$ for $x \in B(z_1, r_1)$, finishing the proof.

The second part is not always true. For example, choose $K_1 = \{x \in \mathbb{R}^2 : x_1 \leq 0\}$, which is a polyhedron, hence closed and convex, and choose $K_2 = \{x \in \mathbb{R}^2 : x_1, x_2 \geq 0, x_1x_2 \geq 1\}$. Let us first show that K_2 is indeed closed and convex. Consider a sequence $\{y_k\}_{k \in \mathbb{N}}$ in K_2 , converging to y^{\star} . As K_2 is a subset of the closed set $\{x \in \mathbb{R}^2 : x_1, x_2 \geq 0\}$, we have $y^{\star} = (y_1^{\star}, y_2^{\star}) \geq 0$. For any $\epsilon > 0$ we can find some index k and $\epsilon_1, epsilon_2 \in [0, \epsilon]$ s.t. $y_k = y^{\star} + (\epsilon_1, \epsilon_2)$. Hence, $(y_1^{\star} + \epsilon_1)(y_2^{\star} + \epsilon_2) \leq y_1^{\star}y_2^{\star} + \epsilon(y_1^{\star} + y_2^{\star}) + \epsilon^2 \geq 1$. Thus $y^{\star} \in K_2$.

For convexity, consider $x, y \in K_2$ and find

$$(\lambda x_1 + (1 - \lambda)y_1)(\lambda x_2 + (1 - \lambda)y_2) = \lambda^2 x_1 x_2 + (1 - \lambda)^2 y_1 y_2 + \lambda (1 - \lambda)(x_1 y_2 + x_2 y_1)$$

$$= 1 - 2\lambda (1 - \lambda) + \lambda (1 - \lambda)(x_1 y_2 + x_2 y_1)$$

$$\geq 1 + \lambda (1 - \lambda) \underbrace{\left(\frac{x_1}{y_1} + \frac{y_1}{x_1} - 2\right)}_{=x_1^2 + y_1^2 - 2x_1 y_1 \geq 0}$$

$$> 1$$

Remember that K_1 is described by $x_1 \le 0$ and notice that $x_1x_2 \ge 1$ in fact tightens the condition $x_1 \ge 0$ for K_2 to be strict. Hence, $K_1 \cap K_2 = \emptyset$.

It remains to show that there is no strictly separating hyperplane. As K_1 is the half space $e_2^x \le 0$, each strictly separating hyperplane has to be of the form $e_2^T x = h$, where h > 0. But defining $y_2 = \frac{h}{2}$ and $y_1 = \frac{2}{h}$ shows that each of those hyperplanes intersects non-trivially with K_2 , hence there is no hyperplane strictly separating K_1 and K_2 . Note that this counterexample can be lifted to an arbitrary dimension n by considering $K_i' := K_i \times \mathbb{R}^{n-2}$.

Exercise 4

Let $\Lambda \subseteq \mathbb{R}^n$ be a lattice and \mathcal{V} its voronoi cell.

- 1. Show vol $\mathcal{V} = \det \Lambda$.
- 2. Show $\mu(\Lambda) = \max_{x \in \mathcal{V}} ||x||$.

Solution:

1. Let B be a basis of Λ and let \mathcal{P} denote the fundamental parallelepiped to this basis.

We saw in the lecture that $\Lambda + \mathcal{P}$ tiles the space, and also briefly discussed that $\Lambda + \mathcal{V}$ tiles the space (up to a set of measure 0). For now, assume both statements to be true, we will show it for the voronoi cell in detail later on.

Consider $L = B(0,R) \cap \Lambda$ and compare $\operatorname{vol}(L+\mathcal{P})$ with $\operatorname{vol}(L+\mathcal{V})$. Let $d_p \in \mathbb{R}$ large enough s.th. $\mathcal{P} \subseteq B(0,d_p)$, and $d_v \in \mathbb{R}$ large enough s.th. $\mathcal{V} \subseteq B(0,d_v)$ (note that according to the lecture, both \mathcal{P},\mathcal{V} are bounded). This means that $\operatorname{vol}(L+\mathcal{P}) \subseteq B(0,R+d_p)$ and $\operatorname{vol}(L+\mathcal{V}) \subseteq B(0,R+d_v)$ and by the tiling property

$$|L|\operatorname{vol}\mathcal{P} \le \operatorname{vol} B(0, R + d_p)$$

$$|L|\operatorname{vol}\mathcal{V} \le \operatorname{vol} B(0, R + d_v)$$

$$\Rightarrow \frac{\operatorname{vol}\mathcal{P}}{\operatorname{vol}\mathcal{V}} \le \frac{R + d_p}{R + d_v} \quad \text{and} \quad \frac{\operatorname{vol}\mathcal{V}}{\operatorname{vol}\mathcal{P}} \le \frac{R + d_v}{R + d_p}.$$

Taking the limit yields vol $\mathcal{V} = \text{vol } \mathcal{P}$.

It is left to show that $\mathcal V$ tiles the space up to a set of measure zero. This is, we want to show $\mathbb R^n \subseteq \Lambda + \mathcal V$ and $\operatorname{int} \mathcal V \cap \operatorname{int}(p+\mathcal V) = \emptyset$.

For the first point, let $x \in \mathbb{R}^n$ and let p be a closest vector. If $x - p \in \mathcal{V}$, then $x \in (p + \mathcal{V})$, hence assume p = 0. If x was not in \mathcal{V} , then there was a point $y \in \Lambda$ s.t. $y^T x > \frac{1}{2} y^T y$, implying $||x - y||^2 > ||x||^2$, a contradiction.

For the second property, assume there is some $p \in \Lambda$ and $z \in \mathcal{V} \cap (p + \mathcal{V})$. We want to show that p is on the boundary. As the voronoi cell is contained in the half-space $p^T x \leq \frac{1}{2} p^T p$, we have $p^T z \leq \frac{1}{2} p^T p$, as z is in the interior. But for the shiftet cell $(p + \mathcal{V})$ we have the feasible inequality

$$||x - p||^2 \le ||x - 0||^2 \quad \Leftrightarrow \quad -p^T x \le -\frac{1}{2} p^T p.$$

Hence, $p^T z = \frac{1}{2} p^T p$ and z is on the boundary.

2. As the voronoi cell is defined to be the set of all vectors for which 0 is the closest lattice vector,

$$\mu(\Lambda) \ge \max_{x \in \mathcal{V}} ||x||$$

follows immediately. For the other direction, let $x \in \mathbb{R}^n$ be any point farthest from the lattice and let p be a closest lattice point. Then $x \in (p + \mathcal{V})$, hence $\mu(\Lambda) \le \max_{x \in \mathcal{V}} ||x||$ is sufficient.

3

Exercise 5

Let C be a convex cone and -C the cone $\{x: -x \in C\}$. We call $L = C \cap -C$ the *lineality space* of C. We call a cone *pointed* if 0 is an extreme point.

1. Prove that $\overline{C} := C \cap L^{\perp}$, where $L^{\perp} = \{u : u^T x = 0 \ \forall x \in L\}$, is a pointed cone and that C is the direct sum of its lineality space L and the pointed cone \overline{C} , i.e.

$$C = (C \cap L^{\perp}) \oplus L.$$

2. Show that any polyhedron has a decomposition

$$P = (Q + C) \oplus L$$

where Q is a polytope, C is a pointed cone and L is a linear subspace.

[Attention: in this exercise, \oplus denotes the direct sum, while we refer to Minkowski's sum by +.]

Solution:

1. Let $C \subseteq \mathbb{R}^n$ be the convex cone (and notice that it neither has to be finitely generated, nor polyhedral!). First note that $L \cap (C \cap L^{\perp}) = \{0\}$ by definition.

For showing $C \subseteq (C \cap L^{\perp}) \oplus L$ let v_1, \ldots, v_r be an orthonormal basis of the lineality space. Extend this basis by v_{r+1}, \ldots, v_n to an orthonormal basis of the whole space. For some $\lambda_i \in \mathbb{R}$, any element $u \in C$ can be written as

$$u = \sum_{i=1}^{n} \lambda_i v_i = \underbrace{\sum_{i=1}^{r} \lambda_i v_i}_{=u_1} + \underbrace{\sum_{i=r+1}^{n} \lambda_i v_i}_{=u_2}.$$

We have to show that $u_1 \in L$ and $u_2 \in (C \cap L^{\perp})$. The containments $u_1 \in L$ and $u_2 \in L^{\perp}$ are clear, so we are left with $u_2 \in C$. But as $u \in C$ and $u_1 \in L \Rightarrow -u_1 \in L \subseteq C$, we find $u_2 = u - u_1 \in C$ as a conic combination.

As $(C \cap L^{\perp}) \subseteq C$ and $L \subseteq C$, the other direction is clear.

On the last sheet we had different characterizations of extreme points. Assume 0 is not an extreme point. Then there are nonzero vectors $u_1, \ldots, u_s \in \overline{C}$ together with nonzero coefficients $\alpha_1, \ldots, \alpha_s \geq 0$ s.t.

$$\sum_{i=1}^{s} \alpha_i u_i = 0 \quad \Rightarrow \quad \alpha_s u_s = -\sum_{i=1}^{s-1} \alpha_i u_i.$$

But then $\alpha_i u_i \in L$, a contradiction. Hence \overline{C} is a pointed cone.

2. By the lecture we have a decomposition P = Q + C with a polytope Q and a cone C. Now we take the decomposition of the first part for our cone $C = \overline{C} \oplus L$, but it might be that $Q \cap L \neq \{0\}$. As a result of the lecture, we know that Q can be written as the convex hull of points $\{p_i\}_{i \in I}$ for some finite set I. For $i \in I$, define $q_i = \operatorname{pr}_L(p_i)$ as the projection of p_i onto L^{\perp} and set $\overline{Q} = \operatorname{conv}\{q_i : i \in I\}$. Checking $Q + L = \overline{Q} \oplus L$ finishes the proof, as

$$Q+C=Q+(\overline{C}\oplus L)=(\overline{Q}\oplus L)+(\overline{C}+L)=(\overline{Q}+\overline{C})\oplus L.$$

4