Convexity

Prof. Friedrich Eisenbrand Christoph Hunkenschröder

Assignment Sheet 2 - Solutions

September 29, 2016

Exercise 1

Let $X \subseteq \mathbb{R}^2$. For each point $x \in X$, let us denote V(x) the set of all points $y \in X$ that can "see" x, i.e. points s.t. the segment xy is contained in X. More formally, for $x \in X$ let

$$V(x) = \{ y \in X : \forall \lambda \in [0, 1], \lambda x + (1 - \lambda)y \in X \}$$

The *kernel* of X is the set of all points $x \in X$ for which V(x) = X.

- a) Prove that the kernel of any set $X \subseteq \mathbb{R}^2$ is convex.
- b) Construct a nonempty set $X \subseteq \mathbb{R}^2$ such that each of its finite subsets can be seen from some point of X but the kernel of X is empty.

Solution:

a) Let $X \subseteq \mathbb{R}^2$ and let K be its kernel. Fix $x, y \in K$ and $\lambda \in (0, 1)$. We want to show that $z = \lambda x + (1 - \lambda)y$ is in K. So $\forall w \in X$ and $\mu \in (0, 1)$, we want that $\mu z + (1 - \mu)w \in X$. But

$$\mu z + (1 - \mu)w = \mu \lambda x + \mu (1 - \lambda)y + (1 - \mu)z$$
$$= (\mu \lambda)x + (1 - \mu \lambda) \left(\frac{\mu (1 - \lambda)}{(1 - \mu \lambda)}y + \frac{1 - \mu}{(1 - \mu \lambda)}w\right)$$

Now, it is easy to check that

$$u = \frac{\mu(1-\lambda)}{(1-\mu\lambda)}y + \frac{1-\mu}{(1-\mu\lambda)}w \in X$$

as $y \in K$. But then also $(\mu \lambda)x + (1 - \mu \lambda)y \in X$ as $x \in K$. So we are done.

b) An example is $\mathbb{R}^2\setminus\{0\}$, or any other convex set in \mathbb{R}^2 without one interior point. Another example is an open half-strip with a square cut out of it as shown on the picture below:

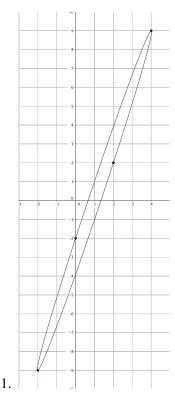


Figure 1: The ellipsoid E

Exercise 2

Let *E* be the ellipsoid f(B(0,1)), where $f: x \mapsto Ax + b$ with a non-singular matrix $A \in \mathbb{R}^{n \times n}$.

1. Let n = 2 and

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 9 \end{pmatrix} \qquad b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Draw the ellipsoid E. What are the axes of E?

2. Let $\Lambda = \Lambda(B)$ be a lattice and $E = \{x \in \mathbb{R}^n \mid x^T Q x \le 1\}$ with matrices

$$B = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} \\ 0 & \frac{1}{2} \end{pmatrix}, \qquad Q = \begin{pmatrix} \frac{1}{4} & \frac{1}{8} \\ \frac{1}{8} & \frac{5}{16} \end{pmatrix}.$$

Show that there is a bijection between the sets $\Lambda \cap B(0,1)$ and $E \cap \mathbb{Z}^2$. [Hint: Is there a relation between the matrices B and Q?]

Solution:

Doing the math yields us

$$Q = A^{-T}A^{-1} = \frac{1}{9} \begin{pmatrix} 9 & -2 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 9 & -3 \\ -2 & 1 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 85 & -29 \\ -29 & 10 \end{pmatrix}.$$

The eigenvectors of Q are

$$\xi_{1,2} = \begin{pmatrix} \frac{1}{58} \left(-75 \pm \sqrt{8989} \right) \\ 1 \end{pmatrix}$$

and the axes of E are thus the unit orthogonal eigenvectors $\frac{\xi_1}{\|\xi_1\|}$ and $\frac{\xi_2}{\|\xi_2\|}$.

2. An ellipsoid is the image of the unit ball under an affine transformation A, and can be written as the set $\langle x | x^T A^{-T} A x \rangle$. It is easy to check that in our case $Q = B^T B$, which means that the matrix transforming the unit ball to the ellipsoid is B^{-1} . The matrix B has full rank, hence can be seen as a bijection from Z^2 to A. Moreover, for any $t \in \mathcal{E} \cap \mathbb{Z}^2$ we find $t^T B^T B t \leq 1$ implying that the lattice point B t is in the unit ball. Vice versa, if B t is in the unit ball, the vector t is in the ellipsoid.

Exercise 3

Recall the definition of the successive minima of a (for this exercise) full-dimensional lattice $\Lambda \subseteq \mathbb{R}^n$.

$$\lambda_k := \min\{r \ge 0 \mid \dim(B(0,r) \cap \Lambda) \ge k\}, \qquad k = 1, \dots, n.$$

This definition might suggest that any lattice Λ possesses a basis $B = (b_1, \dots, b_n)$ with $||b_k|| = \lambda_k$ for all k

However, this is not true in general. Show for $n \ge 5$ that there exists a lattice where you cannot find a basis with this property.

Solution:

Let $\Lambda = \{x \in \mathbb{Z}^n \mid x_i \equiv_2 x_j \ \forall i, j\}$, i.e. each lattice point has either only even or only odd coordinates. It is easy to check that Λ is indeed a lattice, i.e. closed under addition, multiplication by integral scalars and discrete (as a subset of \mathbb{Z}^n).

Let e_i be the *i*-th canonic unit vector. As $2e_i \in \Lambda$ for all *i*, we find $\lambda_i \le 2$, i = 1, ..., n. Now consider a lattice point *p* with odd coordinates. Each $|p_i|$ is at least 1, hence $||p||^2 \ge n$. Using the assumption $n \ge 5$, we see that $p \notin B(0,2)$, which means that each set $B = (b_1, ..., b_n)$ with $||b_i|| = \lambda_i = 2$ for all *i* only spans a sublattice of Λ .

Exercise 4 Let $\Lambda \subseteq \mathbb{R}^n$ be a lattice of rank d.

- 1. Let $B \in \mathbb{R}^{n \times d}$ be a matrix whose columns are linearly independent vectors in Λ . Show that B is a basis of Λ if and only if the fundamental parallelepiped $\mathcal{P}(B) = \{Bt \mid t \in [0,1)^d\}$ associated to B does not contain any lattice point apart from 0.
- 2. Let $p \in \Lambda$ and $p \neq 0$. We call *p primitive* if for each $k \in \mathbb{N}_{\geq 2}$ the vector $\frac{1}{k}p \notin \Lambda$. Show that any primitive vector can be extended to a basis *B* of Λ .

Solution:

1. For one direction, let B be a basis. By the definition of \mathcal{P} it follows that no nonzero lattice point is contained.

Now let B be any set of d linear independent lattice vectors s.t. $\mathcal{P}(B)$ does not contain a nonzero lattice point. As the columns of B are linearly independent, any lattice point p can be written as Bt for some $t \in \mathbb{R}^d$. Define the vector t' component wise as $t'_i = t_i - \lfloor t_i \rfloor$ for all i in range. But now Bt' is a lattice point as well, and $Bt' \in \mathcal{P}(B)$, hence t' = 0 and t was already integral. Thus B is a basis.

2. Solution 1: Write $b_1 = p$, and for vectors b_1, \ldots, b_k , define $B_k = (b_1, \ldots, b_k)$ and $A_k = A \cap \text{span}\{b_1, \ldots, b_k\}$. We will pick the vectors b_i one by one, providing that B_k is a basis of A_k .

As b_1 is primitive, it is a basis of the lattice $\Lambda \cap \text{span}\{b_1\}$.

Now assume we already picked b_1, \ldots, b_{k-1} s.t. B_{k-1} is a basis of Λ_{k-1} , we will show how to pick b_k accordingly. Pick any primitive vector $q \in \Lambda$ that is not in the span of B_{k-1} and consider the

fundamental parallelepiped $\mathcal{P}_k := \mathcal{P}((B_{k-1},q))$. If it does not contain any lattice vector other than 0, through the kindness of part 1 we are done by setting $b_k = q$. Otherwise, it contains only finitely many lattice points, hence we can choose a vector $b_k \neq 0$ that is closest to span $\{b_1, \ldots, b_{k-1}\}$. This means, rewriting $b_k = b + b^{\perp}$ with $b \in \text{span}\{b_1, \ldots, b_{k-1}\}$ and $b^{\perp} \perp \text{span}\{b_1, \ldots, b_{k-1}\}$, we want to minimize $\|b^{\perp}\|$.

We still have to ensure that B_k is a basis of Λ_k . Pick any $v \in \Lambda_k$ with representation $v = B_k t$, $t \in \mathbb{R}^k$. If t_k is integral, the vector $v - t_k b_k$ is in Λ_{k-1} and we are done. Otherwise, the vector $v' = v - B\lfloor t \rfloor = \sum_{i=1}^k (t_i - \lfloor t_i \rfloor) b_i$ is the sum of two lattice vectors, hence contained in Λ . It is also contained in \mathcal{P}_k and has less distance from span $\{b_1, \ldots, b_{k-1}\}$ than v, a contradiction.

Hence, B_d is a basis of $\Lambda_d = \Lambda$.

Solution 2: For this solution we need results on the Hermite Normal Form. In particular, for any matrix $A \in \mathbb{Z}^{n \times m}$ of full row rank, there exists a unimodular matrix U of suitable dimension s.t. AU = [B, 0], where B is a lower triangular matrix, and $B_{ii} > B_{ij}$ for all j within range, i.e. in every row, the diagonal entry is the largest entry and unique.

Now let p be as in the exercise, B any basis, and t s.t. p = Bt. Let U be the unimodular matrix according to the hermite normal form of t^T , i.e. $t^T U = (\alpha, 0, ..., 0)$. It is commonly known that α is the gcd of the entries of t, hence 1 in our case, but not difficult to observe either.

Define $B' = BU^{-T}$ and observe that p is the first basis vector in B' as follows.

$$\alpha B' e_1 = B U^{-T} U^T t = p,$$

implying $\alpha = 1$ as p is primitive. This finishes the proof.

Exercise 5 [\star] Prove that John's theorem achieves a better approximation ratio for centrally symmetric convex bodies, i.e. prove the following.

Let $K \subseteq \mathbb{R}^n$ be a centrally symmetric convex body. Show that there is an ellipsoid \mathcal{E} (with the origin as center) s.t. $\mathcal{E} \subseteq K \subseteq C \sqrt{n}\mathcal{E}$ for some (large) constant C > 0.

Solution:

We will proceed similar to the proof for the general version, i.e. let K be a centrally symmetric convex body and let w.l.o.g. $B_1(0)$ be the largest ellipsoid contained in K. If $K \subseteq \sqrt{n}CB_1(0)$, we are done. Otherwise let $p \in K \setminus \sqrt{n}CB_1(0)$, i.e. $||p|| \ge \sqrt{n}C$. By rotating K we may assume $p \in \text{span}(e_1)$.

We define an ellipsoid

$$\mathcal{E} = \{x | \sum_{i=1}^{n} \frac{1}{\alpha_i^2} \langle x, e_i \rangle^2 \le 1\}$$

with $\alpha_1 = 2$ and $\alpha_i = \sqrt{\frac{10n}{10n+1}}$ for i = 2, ..., n. Note that, in contrast to the lecture, we do not shift the center of \mathcal{E} . We claim that the volume of \mathcal{E} is at least the volume of $B_1(0)$ times a constant factor larger than 1, and that E is contained in K, contradicting the choice of $B_1(0)$ as the largest contained ellipsoid. In fact, we do not need the fact that B(0,1) was the largest ellipsoid. As K is bounded and we increase by a constant factor, this gives a contradiction by itself after finitely many iterations. Note that the proof in Barvinok's book gives you a better constant in the theorem, but he indeed needs the argument that there is a maximum ellipsoid that can be chosen.

E has large volume: Using Bernoulli's inequality $(1+x)^r \ge 1 + rx$ for $r \ge 1$ and x > -1, we find

$$\operatorname{vol}(\mathcal{E}) = \prod_{i=1}^{n} \alpha_{i} \operatorname{vol}(B_{1}(0))$$

$$= 2 \left(\frac{10n}{10n+1}\right)^{(n-1)/2} \operatorname{vol}(B_{1}(0))$$

$$= 2 \left(1 - \frac{1}{10n+1}\right)^{(n-1)/2} \operatorname{vol}(B_{1}(0))$$

$$\geq 2 \left(1 - \frac{1}{10} \underbrace{\frac{n-1}{2n+1/5}}_{\leq 1}\right) \operatorname{vol}(B_{1}(0))$$

$$\geq 1.5 \operatorname{vol}(B_{1}(0)),$$

as long as $n \ge 3$. For n = 1 the factor is 2 and for n = 3 one can easily verify the claim by calculating $2\sqrt{20/21} = \sqrt{3 + 17/21} \ge 1.5$.

 \mathcal{E} is contained in K: Similar to the lecture, we will show $\mathcal{E} \subseteq S \subseteq K$, where

$$S = \text{conv}(\{x \mid ||x|| = 1, x_1 = 0\} \cup \{p, -p\})$$

is the convex hull of the unit disc orthogonal to p together with p, -p. As the disc as well as p, -p are contained in K, we have $S \subseteq K$. Let $q = \lambda x + (1 - \lambda)p$ be a vector on the boundary of S, i.e. $\lambda \in [0, 1]$ and x with ||x|| = 1, $x_1 = 0$. Since S and \mathcal{E} are centrally symmetric, considering -p is similar. We have

$$q^{T} \begin{pmatrix} \alpha_{1}^{-2} & 0 \\ 0 & \alpha_{n}^{-2} \end{pmatrix} q \ge \frac{1}{4} \lambda^{2} n C^{2} + (1 - \lambda)^{2} \frac{10n + 1}{10} \underbrace{\sum_{i=2}^{n} x_{i}^{2}}_{=1}$$
$$= \frac{\lambda^{2} n C^{2}}{4} + (1 - \lambda)^{2} \frac{10n + 1}{10}.$$

For $(1-\lambda) \geq \sqrt{\frac{10n+1}{10n}}$ the second summand is larger than 1, as the other is non-zero, $q \notin S$. For $(1-\lambda) < \sqrt{\frac{10n+1}{10n}} \Leftrightarrow \lambda > 1 - \sqrt{\frac{10n+1}{10n}}$, we can choose C large enough. The choice of C is independent of n, as for $m \geq n$, one has $\sqrt{\frac{10m+1}{10m}} \geq \sqrt{\frac{10n+1}{10n}}$.

Thus \mathcal{E} is an ellipsoid in K with volume larger than $B_1(0)$ by a constant factor, contradicting the choice of $B_1(0)$. This finishes the proof.