Randomized Algorithms. Exercises for 17.11

- pr.5.5 Use probabilistic method to show existence of an expanding bipartite graph (L,R,E) with the following properties:
 - |L| = |R| = n.
 - Every vertex in L has degree $n^{3/4}$, and every vertex in R has degree at most $3n^{3/4}$.
 - Every subset of $n^{3/4}$ vertices is L has at least $n-n^{3/4}$ neighbors in R.
- pr.7.16 Use definition of IP to directly get:
 - $NP \subseteq IP$,
 - If definition of IP is modified to require probability of error being zero, then the resulting class in NP,
 - $co RP \subseteq IP$.
- pr.7.16 Show that $IP \subseteq PSPACE$
- pr.7.18 Define MIP as an extension of IP, where the verifier has access to two provers who cannot communicate with each other. Show that MIP = PCP.
- pr.7.19 Show that:
 - P = PCP[0, 0],
 - NP = PCP[0, poly(n)],
 - co RP = PCP[poly(n), 0].