Plan for today

- Minkowski's theorem & applications
- Shortest vector problem and orthogonality defect

```
, Recall: GIVEN A LATTICE ACR, FIND VE A 10)
```

The geometry of numbers: Minkowski's theorem

Theorem

Let $K \subseteq \mathbb{R}^n$ be a convex body which is centrally symmetric around the origin $(x \in K \text{ implies }$

Let
$$K \subseteq \mathbb{R}$$
 be a convex body which is certifally symmetric around the origin $(x \in K)$ implies $-x \in K$). If $\operatorname{Vol}(K) \ge 2^n$, then K contains a nonzero integral vector $v \in \mathbb{Z}^n \setminus \{0\}$.

LET K AS ABOVE AND SUPPOSE BY CONTRADICTION KNZ NOT = .

(1) WE CAN ASSUME WLOG VOL(K)
$$\geq 2^n$$
 (IF VOL = 2^n THEN $\exists 5 \geq 0$:

(1+5)K $\cap \mathbb{Z}^n \setminus \{0\} = \emptyset$

tre Zn, consider v+(1/2K)=s x+S &D 2x eK

(i)
$$V_{0}(X) > 2^{n}$$

(ii) $V_{0}(X) > 2^{n}$

(iii) $V_{0}(X) > 2^{n}$

(iv) $V_{0}(X) > 2^{$

Lattice basis and lattice determinant

Definition

A basis of a lattice Λ is a matrix $B \in \mathbb{Z}^{n}$ such that $\Lambda = \Lambda(B)$.

From what we proved during last lectures, we deduce:

each lattice has a basis: If B is a basis of a lattice Λ , then $det(\Lambda) = det(B)$ is well-defined. $\Lambda = \Lambda(A) = \Lambda(A) = \Lambda(A) = \Lambda(A) = \Lambda(A) + \Lambda(A) + \Lambda(A) + \Lambda(A) = \Lambda(A) + \Lambda(A)$ FOR DET (A) TO BE WELL-DEFINED B, B BASIS OF LATTRIEY HAVE THE SAITE B. U. U. U. CIN ABSOLUTE VALUE) => 124(B) = 120+(D)1

Minkowski's theorem: Lattice version

Theorem

Let $\Lambda \subseteq \mathbb{R}^n$ be a lattice and let $K \subseteq \mathbb{R}^n$ be a convex body of volume $\operatorname{Vol}(K) \geqslant 2^n \det(\Lambda)$ that is symmetric about the origin. Then K contains a nonzero lattice point.

First application: short vectors in lattices

Theorem

A lattice
$$\Lambda\subseteq\mathbb{R}^n$$
 has a nonzero lattice point of length at most $2\cdot\sqrt[n]{\det(\Lambda)}$

PF. APPLY MINKOWSKI WITH
$$K = B_n$$
 (BALL OF IR" OF RADIUS R)

Jol (Br) = $\int_{\Omega} P^{(1)} det(\Delta)$

FOR $P = 2 \left(\frac{\det(\Delta)}{\ln R} \right) = \frac{1}{2} \frac{\det(\Delta)}{\ln R}$
 $P = 2 \left(\frac{\det(\Delta)}{\ln R} \right) = \frac{1}{2} \frac$

VOLUTE OF THE

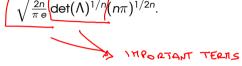
UNIT BALL

POINT V 7 D 11 JII < RADIUS

A LATTICE

Exercise

Show that the bound given in the previous slide is asymptotically equivalent to



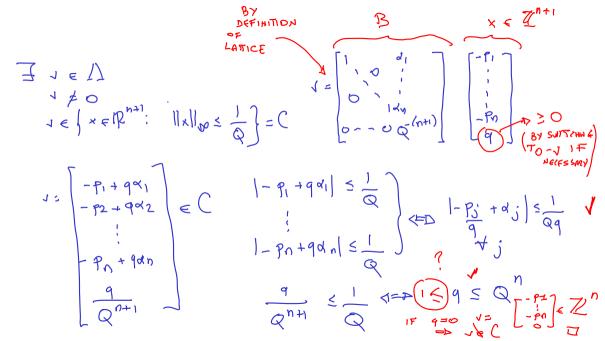
Second application: simultaneous approximation

=> By MINKOWSKI, C 1 1/10/2/1/

Theorem (Dirichlet)
Given reals
$$Q > 1$$
 and α , there exists $p, q \in \mathbb{Z}$ with $1 \le q \le Q$ such that $|\alpha - \frac{p}{q}| \le \frac{1}{qQ}$.

Theorem (Dirichlet, simultaneous approximation of reals)
Given real numbers $Q > 1$ $\alpha_1, \ldots, \alpha_n$, there exists $p_1, \ldots, p_n, q \in \mathbb{Z}$ such that:

 $\det \Delta = \left(\det(B) \right) = \frac{1}{Q^{n+1}}$ $C = \left(x \in \mathbb{R}^{n+1} : \| x \|_{\infty} \le \frac{1}{Q} \right) \underbrace{\left(\frac{1}{Q^{n+1}} + \frac{1}{Q^{n+1}} + \frac{1}{Q^{n+1}} \right)}_{\text{SIDE 26NGTH } Q} \underbrace{\left(\frac{1}{Q^{n+1}} + \frac{1}{Q^{n+1}} + \frac{1}{Q^{n+1}} + \frac{1}{Q^{n+1}} \right)}_{\text{N}}$



Gram-Schmidt orthogonalization and orthogonality defect

6 BUT IN GENERAL Let $B \in \mathbb{Z}^{m \times m}$ be the basis of a lattice, and B^* its GS orthogonalization. Then $\mathcal{L} \subseteq \mathcal{B}$

BASIS OF SPAN (B)

for some upper triangular matrix
$$R = \begin{pmatrix} 1 & \mu \\ 1 & \dots \\ 0 & 1 \end{pmatrix}$$
. $|\det(B)| \leq \pi_i \cdot ||b_i||$

$$|\det(B)| = |\det(B^*)| \cdot |\det(R)| = |\det(B^*)| = \pi_i \cdot ||b_i||$$

Definition

The orthogonality defect of B is the value $\gamma = \frac{\prod_{l} ||b_{l}||}{|\det B|}$. IS MY BASIS B FROM AN ORTHOGONAL BASIS

HELPS FOR FINDING Small orthogonality defect short non-zero vector

Theorem

Let $B \in \mathbb{Z}^{n \times n}$ be a basis of a lattice Λ with orthogonal defect γ . Then a shortest non-zero

Vector of
$$\Lambda$$
 has the form
$$v = \sum_{i} x_i b_i,$$
 with $x_i \in \mathbb{Z}$, $x_i \in [-\infty, \infty]$ be a basis of a lattice Λ with orthogonal defect γ . Then a shortest non-zero vector of Λ has the form
$$v = \sum_{i} x_i b_i,$$
 with $x_i \in \mathbb{Z}$, $x_i \in [-\infty, \infty]$

with
$$x_i \in \mathbb{Z}$$
, $x_i \in [-\gamma, \gamma]$. Botton line => # of vectors to BE CHECKED TO

Find the Shortest Mon. 2620

AL6 $\lesssim (2\gamma + 1)^{\gamma}$

$$B = B^* \cdot R$$

$$\pi_i \|b_i\| = \gamma, \pi_i \|b_i\|^* = B \|b_2\| \cdot \|b_2\| \cdot \|b_3\| \cdot \|b_4\| \cdot$$

THE FARTHE SAME, FOR THE LAST ROW OF RIS (0 ...)

$$1 = \left\{ \begin{array}{c} x_{1} b_{1} = B \\ x_{1} \end{array} \right\} = \left\{ \begin{array}{c} x_{1} \\ x_{2} \end{array} \right\} =$$

THE PROOF