PART 4 INTEGER PROGRAMMING

Read Chapters 11 and 12 in textbook

A capital budgeting problem

- ▶ We want to invest \$19'000
- Four investment opportunities which cannot be split (take it or leave it)
 - 1. Investment of \$6'700 and net present value of \$8'000
 - 2. Investment of \$10'000 and net present value of \$11'000
 - 3. Investment of \$5'500 and net present value of \$6'000
 - 4. Investment of \$3'400 and net present value of \$4'000
- Since investments cannot be split up, we cannot model this with continuous variables as in linear programming

An integer program

$$\max 8x_1 + 11x_2 + 6x_3 + 4x_4$$
 subject to
$$6.7x_1 + 10x_2 + 5.5x_3 + 3.4x_4 \le 19$$
 $x_i \in \{0, 1\}$

Solving the integer program

Encode problem in lp-format (or mps format):

```
Maximize
obj: 8 x1 + 11 x2 + 6 x3 + 4 x4
Subject to
c1: 6.7 x1 + 10 x2 + 5.5 x3 + 3.4 x4 <= 19
Binary
x1 x2 x3 x4
End
```

An open source solver for mixed integer programming is for example symphony (see http://www.coin-or.org/) Optimal solution: $x_1 = 0$, $x_2 = x_3 = x_4 = 1$

Definition of integer programming

Mixed integer program (MIP)

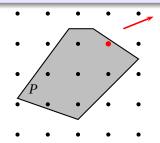
$$\max c^{T} x$$

$$Ax \le b$$

$$x_{i} \in \mathbb{Z} \text{ for } i = 1, ..., p.$$

Here $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$ and $c \in \mathbb{Q}^n$. If p = n (all variables have to be integral), then we speak about pure integer program.

 $x \in \mathbb{R}^n$ is integer feasible, if x satisfies all linear constraints and the constraints $x_i \in \mathbb{Z}$ for i = 1, ..., p.



Solving MIPs

LP-relaxation

Ignoring constraints $x_i \in \mathbb{Z}$ for i = 1, ..., p yields linear program, called the LP-relaxation. The value of LP-relaxation is upper bound on the optimum value of the MIP.

Consider pure IP Maximize obj: x1 + x2Subject to $c1: -x1 + x2 \le 2$ $c2: 8 x1 + 2 x2 \le 19$ Bounds x1 x2 >= 0Integer x1 x2 End

LP-relaxation

Maximize

obj: x1 + x2

Subject to

 $c1: -x1 + x2 \le 2$

c2: 8 x1 + 2 x2 <= 19

Bounds

 $x1 \ x2 >= 0$

End

Solution of LP-relaxation

- $x_1 = 1.5, x_2 = 3.5$
- ightharpoonup Value: x = 5

LP-relaxation

Maximize

c1:
$$-x1 + x2 \le 2$$

Bounds

$$x1 x2 >= 0$$

End

Solution of LP-relaxation

- $x_1 = 1.5, x_2 = 3.5$
- ightharpoonup Value: z = 5

Create two sub-problems:

Left sub-problem

```
Maximize
obj: x1 + x2
Subject to
c1: -x1 + x2 <= 2
c2: 8 x1 + 2 x2 <= 19
Bounds
x1 x2 >= 0
x1 <= 1
End
```

Solution of left subproblem

- $x_1 = 1, x_2 = 3$ (integral feasible)
- ▶ Value: z = 4

Right sub-problem

```
Maximize
obj: x1 + x2
Subject to
c1: -x1 + x2 <= 2
c2: 8 x1 + 2 x2 <= 19
Bounds
x1 x2 >= 0
x1 >= 2
End
```

Solution of right subproblem

- \rightarrow $x_1 = 2$, $x_2 = 1.5$ (integral infeasible)
- ▶ Value: z = 3.5

Optimal solution

- ► Each integer feasible solution of right sub-problem has value bounded by 3.5.
- Since value of integer feasible solution $x_1 = 1$, $x_2 = 3$ is 4, we can prune the right sub-problem
- Since integer feasible solution $x_1 = 1$, $x_2 = 3$ is also optimal solution of left sub-problem, each integer feasible solution of left-subproblem has value at most 4.
- ► Thus $x_1 = 1$ and $x_2 = 3$ is optimum solution to integer program.

Branch and Bound

L is list of linear programs, z_L is global lower bound on value of MIP, x^* is integer feasible solution of MIP

Branch & Bound

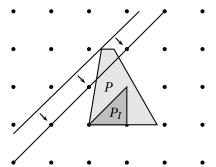
- 1. (Initialize) $L = \{LP\text{-Relaxation of MILP}\}, z_L = -\infty, x^* = \emptyset$
- 2. (Terminate?) If $L = \emptyset$, then x^* is optimal
- 3. (Select node) Choose and delete problem N_i from L
- 4. (Bound) Solve N_i . If N_i is infeasible, then goto 2), else let x^i be its optimal solution and z_i be its objective value.
- 5. (Prune) If $z_i \le z_L$, then go to 2). If x^i is not integer feasible, then go to step 6) If x^i is integer feasible, then set $z_L = z_i$ and $x^* = x^i$. Go to step 2)
- 6. (branch) From N_i construct linear programs $N_i^1, ..., N_i^k$ with smaller feasible region whose union contains all integer feasible solutions of N_i . Add $N_i^1, ..., N_i^k$ to L and go to step 2).

Branching

- Let x^i be solution to linear program N_i
- Let x_j^i be one of the non-integral components of x^i for $j \in \{1, ..., p\}$
- ► Each integer feasible solution satisfies $x_j \le \lfloor x_j^i \rfloor$ or $x_j \ge \lceil x_j^i \rceil$.
- ▶ One way to branch is to create sub-problems $N_{ij}^- := \{N_i, x_j \leq \lfloor x_j^i \rfloor \}$ and $N_{ij}^+ := \{N_i, x_j \geq \lceil x_j^i \rceil \}$
- Strong branching creates those sub-problems whose sum of values is as small as possible (tightening the upper bound)

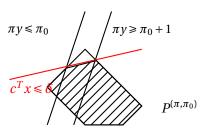
Cutting planes

- Suppose we have pure integer program $\max\{c^T x: Ax \le b, x \in \mathbb{Z}^n\}$
- ► Set $P = \{x \in \mathbb{R}^n : Ax \le b\}$ is called polyhedron
- ▶ Integer hull is convex hull of $P \cap \mathbb{Z}^n$.
- ▶ If $c^T x \le \delta$, $c \in \mathbb{Z}^n$ is valid for P, then $c^T x \le \lfloor \delta \rfloor$ valid for integer hull P_I of P.
- ► Cutting plane $c^T x \le \lfloor \delta \rfloor$ strengthens LP-relaxation



Cutting planes for mixed integer programs

- ► $\max\{c^T x: Ax \le b, x_i \in \mathbb{Z} \text{ for } i = 1,..., p\}$ MIP, denote vector first p variables $x_1,...,x_p$ by y
- ► Split: Tuple (π, π_0) , $\pi \in \mathbb{Z}^p$, $\pi_0 \in \mathbb{Z}$
- ► Each integer feasible solution x in polyhedron satisfies $\pi^T y \le \pi_0$ or $\pi^T y \ge \pi_0 + 1$
- ► $P = \{x \in \mathbb{R}^n : Ax \le b\}$ polyhedron: $P^{(\pi,\pi_0)} = \operatorname{conv}(P \cap (\pi y \le \pi_0), P \cap (\pi y \ge \pi_0 + 1)).$
- Split cut is inequality $c^T x \le \delta$ such that there exists a split (π, π_0) such that $c^T x \le \delta$ is valid for $P^{(\pi, \pi_0)}$



In practice

Mixed integer linear programs are solved with a combination of branch & bound and cutting planes

PART 4.1 APPLICATIONS OF MIXED INTEGER PROGRAMMING

Combinatorial auctions

Problem description

- ► Auctioneer sells items $M = \{1, ..., m\}$
- ▶ Bid is a pair $B_i = (S_i, p_i)$, where $S_i \subseteq M$ and p_i is a price
- ► Auctioneer has received n bids $B_1, ..., B_n$
- Question: How should auctioneer determine winners and losers in order to maximize his revenue?

Example

- Four items $M = \{1, 2, 3, 4, \}$
- ▶ Bids: $B_1 = (\{1\}, 6)$, $B_2 = (\{2\}, 3)$, $B_3 = (\{3, 4\}, 12)$, $B_4 = (\{1, 3\}, 12)$, $B_5 = (\{2, 4\}, 8)$, $B_6 = (\{1, 3, 4\}, 16)$

Integer program

```
Maximize
```

obj: 6 x1 + 3 x2 + 12 x3 + 12 x4 + 8 x5 + 16 x6

Subject to

c1: x1 + x4 + x6 <= 1

c2: x2 + x5 <= 1

c3: x3 + x4 + x6 <= 1

c4: x3 + x5 + x6 <= 1

Binary

x1 x2 x3 x4 x5 x6

End

Several indistinguishable items

- u_i : Number of items of type i
- ► Bid is tuple: $B_j = (\lambda_1^j, ..., \lambda_m^j, p_j)$

Integer program

$$\max \sum_{i=1}^{n} p_j x_j$$

$$\sum_{j} \lambda_i^j x_j \le u_i \text{ for } i = 1, ..., m$$

$$x_j \in \{0, 1\}, j = 1, ..., n.$$

The lockbox problem

- National firm in US receives checks from all over the country
- Delay from obligation of customer (check postmarked) to clearing (check arrives)
- Money should be available as soon as possible
- Idea: Open offices all over country to receive checks and to minimize delay

Example

- Receive payments from four regions: West, Midwest, East, South
- Average daily value from each region is: \$600 K, \$240 K, \$720 K, \$360 K respectively
- Operating Lockbox costs \$90 K per year

Clearing times:

From	L.A.	Pittsburgh	Boston	Houston
West	2	4	6	6
Midwest	4	2	5	5
East	6	5	2	5
South	7	5	6	3

Example cont.

- Average of $3'600K = 6 \times 600K$ is in process any given day considering West sending to Boston
- ► Assuming 5% interest rate per year, this corresponds to a loss of interest of 180 K per year

Complete table of lost interest in \$K:

From	L.A.	Pittsburgh	Boston	Houston
West	60	120	180	180
Midwest	48	24	60	60
East	216	180	72	180
South	126	90	108	54

Example cont.

Integer programming formulation

- ▶ $y_i \in \{0, 1\}$ indicates whether lockbox j is open or not
- $x_{ij} = 1$ if region *i* sends checks to lockbox *j*
- Objective is to minimize total yearly loss

$$\min 60x_{11} + 120x_{12} + 180x_{13} + 180x_{14} + 48x_{12} \dots + 90y_1 + \dots + 90y_4$$

Each region is assigned to exactly one lockbox

$$\sum_{j} x_{ij} = 1 \text{ for all } i$$

Regions can only send to open lockboxes:

$$\sum_{i} x_{ij} \leq 4y_j \text{ for all } j$$

Complete IP

```
Minimize
obj: 60 X11 + 120 X12 + 180 X13 + 180 X14
+ 48 X21 + 24 X22 + 60 X23 + 60 X24
+ 216 X31 + 180 X32 + 72 X33 + 180 X34
+ 126 X41 + 90 X42 + 108 X43 + 54 X44
+ 90 Y1 + 90 Y2 + 90 Y3 + 90 Y4
Subject to
c1: X11 + X12 + X13 + X14 = 1
c2: X21 + X22 + X23 + X24 = 1
c3: X31 + X32 + X33 + X34 = 1
c4: X41 + X42 + X43 + X44 = 1
c5: X11 + X21 + X31 + X41 - 4 Y1 \le 0
c6: X12 + X22 + X32 + X42 - 4 Y2 \le 0
c7: X13 + X23 + X33 + X43 - 4 Y3 <= 0
c8: X14 + X24 + X34 + X44 - 4 Y4 \le 0
Binary
X11 X12 X13 X14 X21 X22 X23 X24 X31
```

Constructing an index fund

- Portfolio should reflect large index (like S&P 500)
- However, not all stocks should be bought (transaction costs)
- Suppose a measure of similarity is available: $0 \le \rho_{ij} \le 1$ for $i \ne j$, $\rho_{ii} = 1$.
- ▶ Variable x_{ij} models i being represented by j

IP model

$$\max \sum_{ij} \rho_{ij} x_{ij} \sum_{j=1}^{n} y_{j} = q \sum_{j=1}^{n} x_{ij} = 1, \quad i = 1, ..., n x_{ij} \le y_{j}, \quad i, j = 1, ..., n x_{ij}, y_{j} \in \{0, 1\}, \quad i, j = 1, ..., n$$

Constructing an index fund cont.

- q stocks are selected
- ▶ Denote by V_i market value of stock i
- ▶ Weight of stock *j*

$$w_j = \sum_{i=1}^n V_i x_{ij}$$

► Fraction to be invested in *j* is proportional to stocks weight

$$\frac{w_j}{\sum_i w_i}$$