PART 5 DYNAMIC PROGRAMMING

Shortest paths in directed graphs

Directed graph

- ► Tuple G = (V, A), where V is finite set of nodes and $A \subseteq V \times V$ is set of arcs (also called edges); arc from u to v is denoted by uv
- $ightharpoonup c: A \longrightarrow \mathbb{R}$ weights on arcs
- ▶ Path is sequence $P = v_0, v_1, ..., v_k$ of nodes such that $v_{i-1}v_i \in A$ for i = 1, ..., k.
- ► Length of path $c(P) = \sum_{i=1}^{k} c(v_{i-1}v_i)$
- ▶ Path $v_0, v_1, ..., v_k$ with $v_0 = v_k$ is called cycle

Shortest path problem

Let $s \in V$. Determine for each $v \in V$ a shortest path from s to v.

Bellman's Equations

- ► Suppose *G* does not contain cycle of negative length
- Let $\ell(v)$ be length of shortest path from *s* to ν (possibly ∞)
- ► Clearly $\ell(s) = 0$ (no neg. cycles!)
- For $uv \in A$ one has $\ell(v) \le \ell(u) + c(uv)$
- If v ≠ s, there must be a node u on shortest path from s to v immediately preceding v.
 For this u one has

$$\ell(v) = \ell(u) + c(uv)$$

(principle of optimality)

► The shortest path distances $\ell(v)$ satisfy Bellman's equations

$$x_s = 0,$$

$$x_v = \min\{x_u + c(uv) : uv \in A\}, \quad v \in V.$$

Sufficiency

Theorem:

If *G* does not contain cycles of length ≤ 0 and if one has a path from *s* to each other node v, then there is unique solution to Bellman's equations, where $x_u = \ell(u)$ for each $u \in V$.

Proof

- ► Let *x* be solution to Bellman's equations
- Let $v \in V$, $v \neq s$. There exists $uv \in A$ with $x_v = x_u + c(uv)$. Likewise, there exists $w \in V$ with $x_u = x_w + c(wu)$.
- ▶ If, repeating, this process, we come back to *v* again, we have found a cycle of length 0 which is excluded
- Consequently, we arrive at s and we have constructed a path $P = (s = v_0, v_1, ..., v_k = v)$ with $x_v = c(P) + x_s = c(P)$. This shows $x_v \ge \ell(v)$.
- Suppose $x \neq \ell$. Then there exists node v with $x_v > \ell(v)$ such that the node u preceding v on shortest path from s to v has $x_u = \ell(u)$.
- ▶ Bellman's equations imply $x_v \le x_u + c(uv) = \ell(u) + c(uv) = \ell(v)$

Acyclic Graphs

- G = (V, A) is acyclic if G does not contain cycles
- ► In this case, *G* has an ordering "<" of nodes, such that $uv \in A$ implies u < v (depth first search)
- Assume nodes are set $\{1, ..., n\}$.

Bellman's equations acyclic graphs

$$x_1 = 0$$

 $x_j = \min_{k < j} (x_k + c_{kj}) \quad j = 2, 3, ..., n.$

- Easily solved by substitution
- x_2 is determined from x_1 , x_3 determined from x_1 and x_2 etc.
- ▶ Running time: O(|A| + |V|)

Bellman-Ford algorithm

Bellman-Ford algorithm

- $\triangleright x_v^j$ length of shortest path from s to v using at most j arcs
- ► Initialization: $x_s^1 = 0$, $x_v^1 = \begin{cases} c(sv) & \text{if } sv \in A \\ \infty & \text{otherwise.} \end{cases}$
- ▶ for i = 2,...,nfor $v \in V$ $x_v^i = \min\{x_v^{i-1}, \min_{uv \in A}\{x_u^{i-1} + c(uv)\}\}$

Running time

- ▶ Iterations outer loop: |V|
- **Each** arc is considered exactly once in inner loop: O(|A|)
- ► Complexity: $O(|V| \cdot |A|)$.

Negative cycles

- ▶ If network does not contain negative cycles and v is reachable from s, then a shortest path uses at most n-1 arcs.
- ▶ Bellman-Ford is correct if no negative cycles are present.

Exercise

Design a polynomial-time algorithm which detects whether G = (V, A) together with arc-weights c has a negative cycle.

Dynamic programming

A capital budgeting problem

4 million to be invested in projects in three different regions At most one project can be run in each region

	Region 1	Region 2	Region 3
Project	cost/profit	cost/profit	cost/profit
1	0/0	0/0	0/0
2	1/2	1/3	1/2
3	2/4	3/9	2/5
4	4/10	-	-

Enumeration

 $4 \times 3 \times 3$ possibilities

Integer program

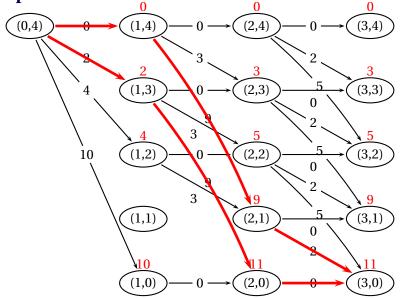
$$x_{ij}=1$$
 if project i is run in region j
$$\max \sum_{ij} p_{ij} x_{ij} \\ \sum_{i} x_{ij} \leq 1, \quad j=1,\ldots,3 \\ \sum_{ij} c_{ij} x_{ij} \leq 4 \\ x_{ij} \in \{0,1\}.$$

Dynamic program

States

- ▶ (i,j) represents optimal choice for first $i \in \{0,1,2,3\}$ regions having still $j \in \{0,1,2,3,4\}$ mio. left to invest.
- Construct graph with nodes being states and arcs from stages (i,j) to (i+1,j') having cost p if the investment of j-j' reflects an implementation of a project of cost j-j' and profit p in region i+1
- Longest path in this directed acyclic graph is optimal strategy
- Number of states: 4 × 5
- ▶ If we had $x \in \mathbb{N}$ regions with at least two possible projects per region and an amount of $y \in \mathbb{N}$ to invest, where each project would have integral costs, one would have $(x+1) \cdot (y+1)$ states, whereas enumeration would require at least 2^x decisions to be compared.

Example cont.



Forward and backward recursion

- ► Forward recursion: Label each state which is reachable from starting state with the longest path distance from starting state using profits as edge costs.
 - Process starts from starting node
- ▶ Backward recursion: Label each state with largest profit that can be collected from this state.

The Knapsack Problem

Knapsack

- ▶ *n* items of weight $w_i \in \mathbb{N}$ and profit $p_i \in \mathbb{N}$, i = 1, ..., n
- ► Knapsack of capacity $K \in \mathbb{N}$
- ► Task: Compute subset of items which still fit into knapsack and maximizes the profit

Integer Program

$$\max \sum_{i=1}^{n} p_i x_i$$
$$\sum_{i=1}^{n} w_i x_i \leq K$$
$$x_i \in \{0, 1\}.$$

Dynamic program for Knapsack

- ▶ $W_i(p)$ least possible weight that has to be accumulated in order to have total profit p using only items from $\{1, ..., i\}$
- $W_{i+1}(p) = \min\{W_i(p), W_i(p-p_{i+1}) + w_{i+1}\}$
- ► States: $\{(i, p): i \in \{1, ..., n\}, p \in \{0, ..., n \cdot p_{\text{max}}\}\}$, where $p_{\text{max}} = \max\{p_i: i = 1, ..., n\}$.
- ► There is an edge from (i, p) to (i + 1, p) of weight 0 and there is an edge from (i, p) to $(i + 1, p + p_{i+1})$ of weight w_{i+1} .
- Compute shortest path distances from (0,0) to all nodes in directed graph
- Number of nodes: $p_{\text{max}} \cdot n^2$
- Number of arcs: $2 \cdot p_{\text{max}} \cdot n^2$

Theorem

The knapsack problem can be solved in time $O(n^2 \cdot p_{\text{max}})$.

Alternative dynamic program

- ▶ $P_i(w)$: Maximum profit which can be accumulated choosing items out of $\{1, ..., i\}$ having total weight w.
- $P_{i+1}(w) = \max\{P_i(w), P_i(w-w_{i+1}) + p_{i+1}\}\$
- ► States: $\{(i, w): i \in \{1, ..., n\}, w \in \{0, ..., K\}\}$
- ► There is an edge from (i, w) to (i + 1, w) of weight 0 and an edge from (i, w) to $(i + 1, w + w_{i+1})$ of weight p_{i+1} .
- Number of states: $n \cdot K$
- Number of arcs: $2 \cdot n \cdot K$
- ► Find longest paths from (0,0) to other states
- Running time: $O(n \cdot K)$

Approximation algorithm

ε -approximation algorithm

- Let $\varepsilon > 0$ be a number
- ► The algorithm \mathscr{A} computes an ε -approximation to the knapsack problem, if it computes a feasible solution x_{ε} with $p^T x_{\varepsilon} \ge (1 \varepsilon) p^T x_{OPT}$, where x_{OPT} is an optimal solution of the Knapsack problem
- ▶ \mathscr{A} is fully polynomial time approximation scheme if the running time of \mathscr{A} is polynomial in n and $1/\varepsilon$.

Designing \mathscr{A}

- ► Set last $t \ge 0$ bits of each p_i to 0 obtaining profits \overline{p}_i
- Let $x \in \{0,1\}^n$ be feasible knapsack solution.
- Clearly $p^T x \ge \overline{p}^T x \ge p^T x n \cdot 2^t$
- Let x_1, x_2 be opt. sol w.r.t. p and \overline{p} respectively
- One has

$$p^Tx_1 \geq p^Tx_2 \geq \overline{p}^Tx_2 \geq \overline{p}^Tx_1 \geq p^Tx_1 - n \cdot 2^t$$

from which we conclude $p^T x_1 - p^T x_2 \le n \cdot 2^t$

- We want $(p^T x_1 p^T x_2)/p^T x_1 \le \varepsilon$
- We have $(p^T x_1 p^T x_2)/p^T x_1 \le n \cdot 2^t/p_{\text{max}}$
- ▶ If $n/p_{\text{max}} > \varepsilon$ solve problem with exact algorithm which takes time $O(n^2 p_{\text{max}}) = O(n^3/\varepsilon)$.
- ► Else find *t* with $\varepsilon/2 < n \cdot 2^t/p_{\text{max}} \le \varepsilon$
- ▶ Apply algorithm to instance defined by $\tilde{p} = \overline{p}/2^t$.
- $\widetilde{p}_{\max} \leq 2^{-t} p_{\max} < 2 \frac{n \cdot 2^t}{\varepsilon} \cdot 2^{-t} = 2 \cdot n/\varepsilon.$
- Running time: $O(n^2 \tilde{p}_{\text{max}}) = O(n^3/\varepsilon)$

Fully polynomial time approximation scheme for Knapsack

Theorem

There exists an algorithm which, given a knapsack instance and $\varepsilon > 0$ computes a feasible solution x with

$$OPT(1-\varepsilon) \le p^T x$$

Where *OPT* denotes the value of an optimal solution. The running time of the algorithm is $O(n^3/\varepsilon)$.

PART 5.1 OPTION PRICING

American call options

- Gives the holder right to purchase underlying security for prescribed amount strike price
- ► Valid until certain expiration date

Pricing derivative security

- $ightharpoonup S_0$ current price of underlying security
- ► Two possible outcomes up and down at time 1:

$$S_1^u = S_0 \cdot u$$
$$S_1^d = S_0 \cdot d$$

How to price the derivative security?

Replication

- ► Consider portfolio of \triangle shares of the underlying and B cash
- ▶ Up-state: $\triangle \cdot S_0 \cdot u + B \cdot R$, (*R* is risk-less interest rate)
- ▶ Down-state: $\triangle \cdot S_0 \cdot d + B \cdot R$
- ► For what values of \triangle and B will portfolio have same payoff C_1^u and C_1^d of derivate?

$$\Delta \cdot S_0 \cdot u + B \cdot R = C_1^u$$

$$\Delta \cdot S_0 \cdot d + B \cdot R = C_1^d$$

One obtains

$$\Delta = \frac{C_1^u - C_1^d}{S_0(u - d)}$$

$$B = \frac{uC_1^d - dC_1^u}{R(u - d)}$$

► Since portfolio is worth $S_0 \triangle + B$ today, this should also be price for derivate security

$$C_0 = \frac{C_1^u - C_1^d}{u - d} + \frac{uC_1^d - dC_1^u}{R(u - d)}$$
$$= \frac{1}{R} \left[\frac{R - d}{u - d} C_1^u + \frac{u - R}{u - d} C_1^d \right]$$

Risk-neutral probabilities

$$p_u = \frac{R-d}{u-d}, p_d = \frac{u-R}{u-d}$$

Remark

There is arbitrage opportunity if u > R > d is not satisfied.

Consequently p_u , $p_d > 0$ and since $p_u + p_d = 1$ one can interpret p_u and p_d as probabilities.

n time steps

- Basic period length (day or week ...)
- Price of asset in period being *S* there is the "up" event (price *uS*) with probability *p* and "down" event (price *dS*) with probability 1 − *p*
- ► Starting from price S_0 in period 0, in period k it is $u^j d^{k-j} S_0$ if there are j up- and k-j down moves.
- ► Probability is $\binom{k}{j} p^j (1-p)^{k-j}$ (binomial distribution).

n time steps

Determining u, d and p

- ► S_k : Price in periods k = 0, ..., n
- Assume to know: Mean value μ and volatility σ of $\ln(S_n/S_0)$
- Let $\triangle = 1/n$ be length between two consecutive periods
- ► Mean and volatility of $\ln(S_1/S_0)$ are $\mu\Delta$ and $\sigma\Delta$ respectively
- ► Direct computation yields $\mu \Delta = p \cdot \ln u + (1 p) \ln d$ and $\sigma^2 \Delta = p \cdot (1 p) (\ln u \ln d)^2$.
- ► Set d = 1/u then equations simplify

$$\mu \cdot \Delta = (2p-1) \ln u$$

 $\sigma^2 \cdot \Delta = 4p(1-p)(\ln u)^2$

Squaring first and adding it to second equation yields

$$(\ln u)^2 = \sigma^2 \Delta + (\mu \Delta)^2.$$

Determining u, d and p cont.

Þ

$$u = e^{\sqrt{\sigma^2 \Delta + (\mu \Delta)^2}}$$

$$d = e^{-\sqrt{\sigma^2 \Delta + (\mu \Delta)^2}}$$

$$p = \frac{1}{2} \left(1 + \frac{1}{\sqrt{1 + (\sigma^2/\mu^2)\Delta}} \right)$$

▶ For small \triangle this is approximately

$$u = e^{\sigma\sqrt{\triangle}}$$

$$d = e^{-\sigma\sqrt{\triangle}}$$

$$p = \frac{1}{2}\left(1 + \frac{\mu}{\sigma}\sqrt{\triangle}\right)$$

Example

- 52 periods
- ▶ S_0 known and random price S_{52} with mean and standard deviation of $\ln(S_{52}/S_0)$ being 10% and 30% respectively. Since $\Delta = 1/52$ "is small" one has $u = e^{0.3/\sqrt{52}} = 1.0425$, d = 0.9592 and $p = 1/2 + (1 + \frac{0.1}{0.3 \cdot \sqrt{52}})$

Dynamic program to determine value of option

- Suppose strike price is c
- ▶ Work backwards from time *N* to time 0
- ▶ Nodes at time *N* are terminal nodes
- ▶ Option value v(j, N) of terminal nodes at height j is

$$\max\{u^j d^{N-j} S_0 - c, 0\}$$

Compute v(k,j) from v(k+1,j) and v(k+1,j+1) using formula with risk-neutral probabilities $p_u = \frac{R-d}{u-d}$, $p_d = \frac{u-R}{u-d}$:

$$v(k,j) = \max \left\{ \frac{1}{R} (p_u v(k+1,j+1) + p_d v(k+1,j)), u^j d^{k-j} S_0 - c \right\}$$

• Output v(0,0)

Example

Stock with

- ▶ Volatility of logarithm σ = .2
- Current price is 62
- What is price of American call option with expiration date in 5 months from now?
- ▶ Strike price *c* is 60
- ▶ Rate of interest is 10% compounded monthly

Compute values

- \triangle = 1/12, u = 1.05943, d = .94390, R = 1 + 0.1/12 = 1.00833
- $p_u = .55770$
- Fill table entries at the end of period. Example (upper right): $S_0 \cdot u^5 c = 22.75$

Example cont.

