
Ecole Polytechnique Fédérale de Lausanne

D-Voting : Front-end development for

an e-voting platform

By : Ahmed ELALAMY, Ghita TAGEMOUATI, Khadija TAGEMOUATI

Supervised by :

Prof. Bryan Ford (DEDIS)
Advisor

Noémien Kocher (DEDIS)
Supervisor

1



Contents

1 Introduction 4
1.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Project Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Designs and Implementations 7
2.1 Authorization mechanism . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Basic model . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Casbin with an Adapter . . . . . . . . . . . . . . . . . . . 11

2.2 Extension of Front-end functionalities . . . . . . . . . . . . . . . 12
2.2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Hint Button . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Individual Results Display . . . . . . . . . . . . . . . . . . 15

2.3 Translation and Internationalization (i18n) . . . . . . . . . . . . 20
2.3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Translation of the web page interface . . . . . . . . . . . . 20
2.3.3 Internationalization: Create a form . . . . . . . . . . . . . 21
2.3.4 Internationalization : Ballot Display . . . . . . . . . . . . 23
2.3.5 Internationalization : Display the results . . . . . . . . . . 24
2.3.6 Mocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Other changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 From election to form . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Modify the introduction image . . . . . . . . . . . . . . . 26
2.4.3 Fix cast vote button . . . . . . . . . . . . . . . . . . . . . 26
2.4.4 Modify the JSON filename . . . . . . . . . . . . . . . . . 27
2.4.5 MaxLength bug fix . . . . . . . . . . . . . . . . . . . . . . 27
2.4.6 Change the favicon . . . . . . . . . . . . . . . . . . . . . . 27
2.4.7 Add a contributors mention in the About page . . . . . . 28
2.4.8 Redirecting to the previous page when logging in . . . . . 28
2.4.9 Add a confirmation before logging out . . . . . . . . . . . 28
2.4.10 Fix setting a role and deleting a role to a user . . . . . . . 29
2.4.11 Result Types . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.12 Edit a node . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2



2.4.13 Ensure the verifiability of ballots in the front-end . . . . . 31

3 Conclusion 32
3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 User Testing and Feedback . . . . . . . . . . . . . . . . . . . . . 32
3.3 Possible Improvements and Features to add . . . . . . . . . . . . 34

Bibliography 36

A Individual JSON export example 37

B Translation 40

3



Chapter 1

Introduction

1.1 Abstract

To address the growing importance of e-voting in our lives, the DEDIS lab has
been working with students to create new solutions. The D-Voting project [6],
which is based on the Dela blockchain, promises to provide a system that guar-
antees voter anonymity while being completely auditable and decentralized. A
web application was previously created in order to facilitate the communication
with the blockchain itself. As a result, the objective of this project’s fourth
iteration is to enhance the front-end features that are already in place and add
new ones.

1.2 Project Structure

Before going into the details of what has been done during the semester, let us
first introduce the structure of the D-Voting project. A diagram can be found
in Figure 1.1 below. The project has two main parts: The Blockchain part and
the Web part, with the latter being our focus this semester. Within these two
parts are four main ”entities”:

1. The blockchain nodes are the main focus of the Blockchain part, they
manage all the voting logic of the project. They are built on top of the Dela
blockchain with a smart contract specific to D-voting and two services: a
Distributed Key Generator (DKG) and a Verifiable Shuffling service. They
are numerous and communicate with each other with the gRPC protocol.

2. Each node contains a proxy, which is a HTTP server that makes it pos-
sible for a web server to communicate with the nodes in the blockchain.
It is mainly called by the Web Back-End, but the Front-end also issues
some requests.

4



3. In the Web Part, the Web Back-End is a web server handling authen-
tication, via the available EPFL Tequila service, and authorization of the
different users. It is trusted by the nodes, hence all the different voting
requests are passed by the Back-End so that it can sign them. It is in
constant communication with the Web Front-End.

4. The Web Front-End is the final and the most important entity of the
project. It is a React-based Web App, styled with TailwindCSS [8], offer-
ing a view to the end-users of the system. Depending on the task, the Web
Front-End will directly send HTTP requests to the proxy of a blockchain
node, or to the Web Back-End.

Figure 1.1: Structure of the D-Voting Project.

In the rest of this report, we will abbreviate Web Back-End into back-end
and Web Front-end into front-end. Unless explicitly stated, when referring to
filepaths, assume we are at the root of the project.

1.3 Motivation

Going into this project with no experience in web development, our personal
goal was first and foremost to learn as much as possible on this topic that we
would have never studied in any class.
The idea was first to implement possible improvements pointed out by previous
students that worked on the project. Then, while working on that, we noticed
some bugs and in collaboration with other students who are working on the
project currently, we defined more possible features.

We focused on three main axes of improvement :

• Usability refers to the ease of use and learnability of a web application.
It has good usability if it is easy for users to accomplish their tasks and
achieve their goals without becoming frustrated or confused.

5



• Robustness refers to the ability of a web application to withstand and re-
cover from errors, exceptions, and other unexpected events. This includes
ensuring that the authorization mechanism is able to handle a wide range
of inputs and conditions without failing or being bypassed, and that it is
able to recover gracefully when errors do occur.

• Accessibility refers to the degree to which a web application can be used
by people. This includes providing alternatives for users who are unable to
use a mouse, or providing language selectors and allowing users to easily
switch between languages, ensuring that translated content is accurate.

6



Chapter 2

Designs and
Implementations

In this chapter we go into much details about what we have done during the
semester and how we have done it.

2.1 Authorization mechanism

2.1.1 Context

Authorization mechanisms are a critical component of any system that controls
access to resources. They help to ensure that only authorized users can access
the resources they are allowed to, while protecting against unauthorized access.
This is particularly important for protecting sensitive or confidential informa-
tion, as unauthorized access to such resources could have serious consequences.

At the beginning of the semester, the authorization mechanism was as fol-
low. When a user logged in, their information were retrieved. We used a user’s
database to store all users’ information. If a user was in the database they got
one of these three roles: Admin, Operator or Voter. If not, they had no rights.
Only admins were able to modify the database.

While this system worked correctly, it had the limitation of only offering
three roles. The first issue is that it can be difficult to determine the appropriate
level of access for each role : Should an admin have all rights for all forms ?
Also, the roles were not clearly determined. Indeed, admins and operators had
the same rights except that operators could not control other users’ roles.
Another issue with this mechanism is that it can be difficult to maintain and
update the system as the needs change.

7



2.1.2 Basic model

Design

When thinking about authorization mechanism, we think about access control.
There are different ways to implement it, one of them is Capabilities. The idea
is to store a matrix taking information in rows, i.e. associate the permissions
to users. For each user, the Capabilities list contains a tuple for each object
expressing the permissions for that object of the user.

To address the limitations we had earlier, we decided to implement an au-
thorization mechanism using the Casbin library [2]. This system is based on the
concept of policies, which are set of rules that defines the access control rules
for a particular system or application. They allow us to grant specific permis-
sions to users and then test whether a user has the necessary policy when it is
required. These policies specify the actions that users, groups, or processes are
allowed to perform, as well as the resources they are allowed to access.
We chose to use Casbin for several reasons :

• It uses a simple and expressive policy language that allows developers to
define access control rules in a clear and concise manner. This makes it
easy to understand and maintain the policies over time.

• It is really flexible.

• It is designed to be scalable and can handle large numbers of users and
resources. This makes it suitable for use in high-traffic systems and appli-
cations.

• It includes a number of adapters that allow it to integrate with various
storage back-ends.

Implementation

This is our first time using this mechanism, so we wanted to start with a simple
approach.

To implement the new access control system, we started by creating a basic
model. This will involve creating two files:

• One that outlines the model being used: model.conf (Figure 2.1.2 is used
to define the access control model).
The request definition section defines the variables that will be used
to represent a request, to access a resource, or perform an action. The
policy definition section defines the variables that will be used to rep-
resent a policy, and the policy effect section specifies the effect that
should be applied when a request matches a policy. Finally, the matchers
section defines the conditions that must be met in order for a request to
match a policy.

8



[request_definition]

r = sub, obj, act

[policy_definition]

p = sub, obj, act

[policy_effect]

e = some(where (p.eft == allow))

[matchers]

m = r.sub == p.sub && r.obj == p.obj && r.act == p.act .

Figure 2.1: An example of a model.conf file.

p, "SCI", "subject", "action"

Figure 2.2: An example of a policy.

• the other file includes all the policies. It contains lines like the one in
figure 2.2. The SCIPER is used to identify users.

But it was not just about creating these two files. The idea was to build on
the previous mechanism and create policies for each action that had to check the
user’s role. We realized that some tests were done directly in the front-end. As,
the authorizations are enforced on the back-end we needed to have information
exchanged between the back-end and the front-end. Also, to avoid checking the
policies by using Casbin each time we need it and to have access to user’s rights
from the front-end, we created a map that links each object to the action the
user is authorized to perform and added it to the personal information of each
user. This information is send to the front-end when logging in.

The behavior of the website is now as follows: when logging in, we get the
user’s personal information that contains their name, surname, SCIPER, role,
a boolean islogged and authorizations. Then, according to the user’s rights, the
front-end adapts the view.

Using Casbin offers us a more flexible authorization mechanism than before
and therefore lets us have more types of users. As we can see in figures 2.3, 2.4,
and 2.5, we have a user that has all rights, one that doesn’t have access to the
Admin page but can still create a form. We can do whatever we want.

After making sure that all is working, a minor change is needed. With the
new system, the role attribute for each user is no longer necessary. Therefore,
we have decided to remove all references to roles.

9



Figure 2.3: Before login, important pages cannot be accessed.

Figure 2.4: When a user has all access, all pages appear in the navigation bar.

10



Figure 2.5: The user logged in cannot manage other users, so the Admin page
doesn’t appear.

2.1.3 Casbin with an Adapter

Design

For only eight users, the policy file had already more than sixty lines. Then,
in the context of using this website at EPFL with a population greater than
15,000 people, it will not be a long term solution to store our policies in that
file. To remedy this issue, as said before, Casbin offers adapters that allow it to
integrate with various storage back-ends.

Implementation

After testing different databases services (mysql, postgres) and different adapters
(sql-adapter, postgres-adapter, sequelize-adapter), we finally find something
that works and that doesn’t have an outdated source code. We use postgres
[10] for our database and the sequelize-adapter [1] as our adapter. We chose to
use Docker Compose [4] to define our database easily and allow us to start and
stop all the services with a single command. We initialize our database in a file
migration.sql, and then create the link between it and Casbin.

Finally, we thought it is more logical that someone who can create forms
can only operate on the ones they have created. For that, we added a request
from the front-end to the back-end so that each time someone creates a form,
we add a new policy for the user involved using the formID to identify the form.
For the other way around, we added an authorization test before doing some
actions (initializing the nodes, shuffling the ballots, closing the form...).

Another change that we needed to do was to modify the mocks used when
running the front-end without the back-end, so that we don’t break it. We just
needed to add the authorizations to the virtual user’s personal information so
that all works correctly.

11



Figure 2.6: An extract from the database.

2.2 Extension of Front-end functionalities

2.2.1 Context

As it was at the beginning of the semester, the website was already functional
and could do all the basic operations expected from a voting platform: Create,
manage forms and participate in them. The main idea was to now focus on User
Experience (UX) and add some features that are nowadays already implemented
in most of the voting websites and that would make ours more enjoyable.

2.2.2 Hint Button

Design

When you answer a form online, there is generally a little clickable ”(i)” icon
that can give you more information about what is expected of you. The first
example that comes to mind is when prompted to enter the CVV number of
your credit card, for which you usually find some hint button explaining what
it refers to and where to find it on your card.

What we call here a ”Hint Button” is more generally called a ”tooltip” and
is a really useful component that can take multiple forms and is considered
invaluable today by UX researchers [12]. A tooltip can be used in different
scenarios [9]:

• Describe new features: For example, Twitter adds a new voice chat feature
and when the user opens the app after updating it, a little popup right
next to the new voice button appears to let them know about this new
feature.

• Contextual help, such as the previous CVV example.

• Brief instructions: For example, you are answering an online survey that
asks you to enter your address, a little information button is there to let
you know what format is expected.

12



Figure 2.7: A web payment component with a hint for the CVV field.

The latter scenario being exactly what we will focus on in this implementation,
as form creators may want to add more instructions and maybe even hints/tips
to help the voter in their answers.

Implementation

Because adding a question-specific Hint field is by nature close to the structure
of a question itself, this new feature implied many changes throughout the code-
base.

In the D-Voting codebase, each type of Question (Text, Rank, Select) is
defined separately in every part. As a question is entirely sent to the blockchain
nodes at the creation of a form, it was necessary to add the specific Hint

field to each of the question types definitions across the codebase. This in-
cluded the front-end (web/frontend/src) type definitions in types/config-

uration.ts with their initializing functions in types/getObjectType.ts and
the types in the smart contract in contracts/evoting/types/ballots.go. A
little refactoring was needed because another thing was already called ”Hint”
in the codebase, and it was referring to the requirements for each question, e.g.
for a Select Question the sentence that says ”Select at most 3 answers” was con-
sidered a ”Hint”. To avoid any problems and confusion, these were refactored
to ”Requirement”.

Changes were also necessary in the JSON validation. We deal with the JSON
format for every communication with the back-end and when importing forms
from a JSON file. In both these cases, the objects need to be correctly format-
ted. In web/frontend/src/schema/configurationValidation.ts, we have a
schema and cross-field validation mechanism implemented using Yup [11]. In
simpler terms, it is a function that checks that when we create a JSON object,
there is no unnecessary fields and each field value respects some requirements

13



(e.g. the Max length for an answer in a Text question is at least of 1). At this
point the Hint field would be added when the JSON object is created but it
would not pass the validation as it is not specified in the validation schema.
We therefore needed to update this as well by simply adding to the validation’s
configuration that there should be a string field named Hint, but with no further
requirements as it should have the possibility of being empty.

In the visual aspect of the creation of a Form, we added an input field just
like for the question title or the choices names, with the difference that we did
not make it mandatory. Then, a new /components/buttons/HintButton.tsx

component was added to the display of each question. This component has
been placed next to the main title and has been styled to be a hoverable ques-
tion mark icon. It has been mainly implemented using an already available
”Popover” component by HeadlessUI [7]. The optional aspect was implemented
by checking whether the text provided is empty or not and we create the button
accordingly. Figures 2.8 and 2.9 show the Hint Button in action.

Figure 2.8: The updated modal for a select question now providing a Hint field.

14



Figure 2.9: The Hint Button in action.

The final needed change was in the mocks’ data. As we designed the Hint

field to be mandatory in the data structures and just empty if no hint was
provided, the mocks’ data needed to contain the field as well. We kept it empty
for most questions, but also added a few examples in.

2.2.3 Individual Results Display

Design

When you have created a form online and you look at the results, there usually
are two tabs where you can see the results in two different ways: Look at the
averages on each question, or look at each Individual answer separately. An
Individual answer, that we will also later call a ballot, refers to the choices se-
lected and fields filled by a single user until they hit the ”Submit” button. At
the beginning of the semester, the D-voting project had the first way imple-
mented, but throughout tests and discussions during the weekly meetings, we
thought that displaying the Individual results could be a useful feature.

Assume for example that a form was created within the DEDIS lab to collect
the pizza order of every lab member during a lunch break. Knowing that 50%
of the lab ordered a pizza with pineapple on it is not a useful information, we
would rather know who ordered what pizza with which drink. Another example
we thought of is for correlation analysis: If your form contains two questions, for
example ”From which faculty are you?” and ”What is your favorite cafeteria?”,
it is great to know that mostly IC people answered and that the preferred
cafeteria across all answers is the Esplanade, but you might want to know if
being in SV and liking L’Ornithorynque is correlated.

Implementation

At the beginning of the semester we had a single Result page in web/fron-

tend/src/pages/form/Result.tsx. Because we wanted to have different types

15



Figure 2.10: An example in Google Forms of two different tabs for what they
call ”Summary” and ”Individual” results.

of display, we decided to create two files that would be referenced in the Result
page: web/frontend/src/pages/form/GroupedResult.tsx that would gener-
ate the same results as what we had before, and web/frontend/src/pages/-

form/IndividualResult.tsx which would generate the separated results for
each ballot.

Figure 2.11: The Grouped Result display of a form (unchanged).

The first thing that we needed to do was divide the two types of display
in two different tabs. This was easily possible thanks to the Tabs component
by HeadlessUI. Each tab is called ”Grouped” and ”Individual” and creates the
according type of display.

16



Figure 2.12: The two result tabs.

A useful property that we already had at the beginning of the semester is
that, when we retrieve the results from the blockchain, we actually just retrieve
an array of the ballots that were sent, with the sole difference that they have
been shuffled and anonymized. It is actually the front-end that is responsi-
ble of averaging the results in the file web/frontend/src/pages/form/compo-
nents/utils/countResult.ts. So what we needed to do was to choose which
ballot to display, and then pick it within the provided array.

We went into this with the idea of reusing as much code as possible. There-
fore, we first reused the same display components (TextResult, SelectResult,

RankResult). These components take as parameter a two-dimensional array, i.e.
an array of each ballot answer for that question, which is itself an array. As here
we are only taking one ballot, we just need to take the 1D array and wrap it
back into a 2D array. All the methods that would count and average the results
could still be used as they all expect a 2D array and averaging a single answer
will just return that answer.

This is where the first version ended, but we quickly realized that keeping
the same type of display was not enjoyable at all. For example, this would show
the RankResult as percentages (the 1st place at 100%, and so on...), when it
would make more sense to put the 1st place first, then the 2nd place second, and
so on.... Therefore, we needed to redesign those graphic components to make
them more comprehensible. For each type of result, we added an individual
result type as well, and each does the following (shown in figure 2.13):

• IndividualTextResult shows the name of the field in bold and the answer
given for that field.

• IndividualSelectResult shows each choice with a box next to it, which
is checked if the answer was chosen.

• IndividualRankResult shows the choices in the order they were ranked.

Now that we have prettier individual results, we needed a way to navigate
through them, i.e. a pagination mechanism. The first thing we put in place is a

17



Figure 2.13: The Individual Result display of the first Ballot in a form.

stateful variable within the IndividualResult that keep in mind which ballot
we look at currently and refreshes the display each time the ballot selected is
changed. We first only added ”Previous” and ”Next” buttons, which worked
well but were not useful when we would have more than a few ballots. We
needed to add a way to enter manually the number of the ballot we want to
look at. In Google Forms for example, this is done using a number-type input
field, but after doing some research, we realized this would potentially cause
problems [13]. We therefore decided to go with a text-type input field with our
own verification procedures. If what was inputted is not an integer and/or is not
within the range, then an error message appears and the ballot is not updated.
This is shown in figure 2.14.

The last thing that needed to be updated is the JSON export. There is
a possibility to get the results in a JSON format. With the grouped results
this would go question by question and for each choice show the percentages.
It seemed logical to export the results individually as well, but with the same
logic that there might be a lot of ballots, we decided to put all the ballots in the
JSON file, not only the one being currently displayed. Also, as here we have no
percentages, the name of each field in the JSON file made no sense anymore.
Therefore, besides adding a Ballot Number at the beginning of each ballot being

18



Figure 2.14: The Pagination mechanism working and displaying errors.

displayed, we changed the names of each type of field:

• For Text results we chose to put the Field name and the Answer provided

• For Select results we put each Candidate with a Checked value that is
either true or false.

• For Rank results we put each Rank in order and which Choice was placed
at that rank.

Lastly, the names of each export were suffixed by ” grouped” or ” individual”
accordingly. Appendix A shows an example of an Individual Result JSON com-
pared to a Grouped Result one on a Rank question.

19



2.3 Translation and Internationalization (i18n)

2.3.1 Context

Internationalization and translation are important considerations for any soft-
ware project that aims to reach a global audience. These processes involve
adapting the software to be able to support multiple languages and cultural dif-
ferences, allowing users from different linguistic backgrounds to use the software
in their preferred language. There are several reasons why internationalization
and translation are important for a software project but the most important for
us is that it helps to improve the user experience for non-native speakers. This
can lead to higher levels of satisfaction and engagement among users.

This project is meant to be used by the EPFL community. Therefore, at
the request of EPFL, we first wanted to translate the interface into the three
languages used: English, French and German.

2.3.2 Translation of the web page interface

The translation of the interface was already implemented on the project. The
only thing that was needed to be done is to fill in the fr.json and de.json

files. But, first, let us explain how it works.

Design

There is a folder web/frontend/src/language. On that package we have three
files: en.json, fr.json and de.json. These files contain all the transla-
tions that we need for the interface. We have two other files: LanguageSelec-
tor.tsx, which is the component that is used to change the language displayed,
and configuration.ts configures the language using the packages of interna-
tionalization provided by React. Finally, we used a function useTranslation

imported from i18next [5] to use one of the 3 files based on the current language.

Implementation

To complete the task, we needed to fill in the fr.json and de.json files. To
do so, we used DeepL [3], a reliable translation service. However, none of us
speak German, so we asked friends and colleagues to check the translation for
accuracy. Additionally, we realized that some features had not been translated
because they were not included in the JSON files. We made an effort to add
all displayed features to these files as much as possible. Appendix B shows an
example of a page in the three languages.

20



2.3.3 Internationalization: Create a form

Now that we have implemented the translation on the web page, the next step
is to enable users to select the language they prefer for the forms. To ensure
accurate translation of the forms, which are entered by other users, we have
decided to allow the option of adding translations in the three languages when
of creating the form.

Design

First let’s explain how a form was created. The elements of a form are defined
as a configuration, which consists of a main title and a scaffold. The main title
is the overall title of the form, and the scaffold is an array of subjects that are
being voted on. There are four types of subject elements, each of which has
approximately the same features. The ones that we are interested in are the
subject title, the list of choices, and the hint button. Once the form is created,
all of this information is sent to the back-end for processing.

Implementation

We focused on the front-end of the system. As previously mentioned, we want
to be able to display the form in three different languages. To do this, we
started by working on the main title of the form. Initially, we created three
fields for each language and saved the values in separate variables: MainTitle,
TitleFr and TitleDe. We added these variables to the configuration so that
we can display the correct value for the main title in each language. We also
added separate variables for the subject titles. At this time of the project, we
had three boxes for each languages where we can enter the MainTitle and three
other boxes for the Subject Title.

Next, we wanted to be able to enter the choices for each subject in three
languages. Previously, the choices were stored in an array. However, we realized
that adding two additional fields for each choice would be too cumbersome and
make the form difficult to create, especially since there could be a large number
of choices. For example, if a subject initially had five choices, our method
would require fifteen fields to be filled out in order to enter all the values in
three languages. To solve this problem, we added three buttons at the top of
the pop-up window that appears when adding a subject (Figure 2.15).These
buttons allow the user to choose the language and enter the values for that
language. The choices are initially stored in three separate arrays: Choices,

ChoicesFr and ChoicesDe.
For consistency, we did the same for the main title and the subject title (Figure
2.16).
Now we can enter and store all the elements that we want but we did not deal
with the back-end yet. Our goal was not to change the back-end. We therefore

21



Figure 2.15: The updated modal for a rank question now providing 3 buttons
for the language.

decided to stringify the three titles into one string according to the following
scheme:

{’en’ : ’MainTitle’, ’fr’ : ’TitleFr’, ’de’ : ’TitleDe’}

Once again, we did the same thing for the subject titles and the hint.
The choices presented more complexity: Our initial plan was to change the way
we stored the choices by using a map that associates a language with an array
of values for that language. However, implementing this change proved to be
difficult because maps in TypeScript often cause problems. In fact, we lost a lot
of time handling errors caused by the maps. Eventually, we realized that the
back-end cannot handle a map and expects to receive an array instead, which
is why we thought of a way to change our map INto an array. We added a new
variable named ChoicesMap which will be our map and Choices will stay an
array and be sent to the back-end. All together, this is how it works:
When we create a subject ChoicesMap is filled, but when we want to change the
elements before going to the back-end we call a method called ChoicesMapTo-

Choices that returns an array containing all elements of the map according to
the following scheme:

[{’en’ : ’Choice 1’, ’fr’ : ’Choix 1’, ’de’ : ’Auswahl 1’}, {’en’ : ’Choice 2’, ’fr’:
’Choix 1’, ’de’: ’Auswahl 2’}]

Now all the elements of the configuration are well stored and sent to the back-
end.

22



Figure 2.16: The updated create form page with the 3 buttons for the language.

2.3.4 Internationalization : Ballot Display

The BallotDisplay component is used to show the ballot but also to display a
preview when the user is creating a form.

Design

First, we want to be able to display the ballot correctly according to the language
chosen. Previously, to display the elements, the form was being taken from the
back-end and all was displayed in English. We will need to convert all the
elements of a form that we added to the new configuration on the front-end as
expected by the back-end

Implementation

As we stringify the title, to be able to display the right value, we parse our
MainTitle element and we assign the English value to MainTitle, the French
value to TitleFr and the German value to TitleDe. We do this in the Bal-

lotDisplay file.
For the hint and the subject title it is the same procedure but we did it on the
Rank, Select, and Text files. Finally, using i18next we can use the language
function and display the right value depending on what it returns.
For the choices, once again it is more complex. As we already explained, when
creating a form we add our choices to a map and we change this map to an array
before sending it to the back-end. So to be able to display the right value we go
the other way around. That means we define a function choicesToChoicesMap,
that takes the array sent by the back-end and fills the ChoicesMap. Then, de-
pending on the language chosen by the user, the right values will be displayed.
This is done on the Rank, Select and Text files too (Figure 2.17).

23



Figure 2.17: An example of the ballots displayed in English and in French.

Next, we want to be able to display the preview when the user is writing the
form. After a lot of reflection, we thought that it is better and more logical
for the user that the language displayed is the language that they are currently
filling. We therefore added the language as an argument to the BallotDiplay

component so we can use it in two ways:

• When we want to display the ballot to be able to vote, the language passed
as argument will be the current language on the page.

• When we want to fill the form during the creation, the language passed
as argument will be chosen according to the buttons that we added.

2.3.5 Internationalization : Display the results

Design

As for the ballot display, we want to be able to display the results in the right
language. There was one component that was used to display the results :
Result. We then added IndividualResult and GroupedResult in the mix. The
main title and the subject title were handled in these files and the display of the
subject Rank, Select and Text were handled in the RankResult, SelectResult
and TextResult components. Now we need to fix these files in the way that it
can display the correct languages

Implementation

We needed to change the display of the MainTitle for the Grouped and Indi-
vidual results. First, as for the ballot display we needed to parse our Title into
three elements. Using i18next we display the right value depending on the lan-
guage. Once again, we did the same for the subject titles.
As for the choices, it is more complicated. Currently, we simply display an array
that is mapped to the correct translation. (Figure 2.18)

24



Figure 2.18: An example of the display of the grouped result in English and
French.

2.3.6 Mocks

Finally, we needed to change the mocks so that they are consistent. Now the
values of the main titles, subject titles and choices are returned to string or an
array of string following the schemes that we explained above.

25



2.4 Other changes

2.4.1 From election to form

The project was originally intended to be an e-voting system for EPFL elections.
However, as it has grown and as the way in which EPFL intends to use it has
evolved, we have decided to change the focus from elections to forms. This is
why we have modified the use of the word ”election” to the word ”form”.

2.4.2 Modify the introduction image

The website has undergone some changes, and as a result, the introduction
image on the homepage (which was a screenshot of the form page) was no
longer accurate. We have replaced the image with a new one to reflect the
current state of the website.

Figure 2.19: The new home page with the use of ’form’ and the replaced image.

2.4.3 Fix cast vote button

While testing the website, we noticed that it takes a little bit of time to load
when you click the button to cast your vote. During this loading time, we tried
clicking the button again. However, we noticed that this caused an unexpected
behavior: we were able to cast multiple votes. To fix this, we have implemented
a feature to disable the button while it is loading.

26



2.4.4 Modify the JSON filename

One useful feature of the project is the ability to create a form either through
the interface or by uploading a JSON file. Similarly, when you have finished
creating a form, you can download the JSON file. During testing, we realized
that naming all files ”form configuration.json” was not logical. To improve this,
we have changed the file naming to use the form’s name instead. In order
to avoid potential security issues, we have also decided to only use the first
100 characters of the title and to replace any non-alphabetic or non-numeric
characters with underscores ’ ’. The same was done for the export of form
results.

2.4.5 MaxLength bug fix

When creating a text question, the form administrator can specify a regex and
a maximum length. However, the administrator can set the maximum length
to any number greater than or equal to zero, which could potentially create
a security issue if the text is very long. To address this, we have decided to
restrict the maximum length to a value between 1 and 1000, inclusive. This will
prevent administrators from setting the maximum length to a value that is too
high.

Figure 2.20: Here, we can see that an error appear when the maxLength is set
to 5000

2.4.6 Change the favicon

A minor visual implementation was to change the favicon, which is the icon
appearing next to the page name in a browser tab. On a React App, it is by
default the React icon, but now it has been changed to the D-Voting Logo.

27



2.4.7 Add a contributors mention in the About page

The About page of the website is one of the pages accessible by any end-user. It
contains some general information about the project, but as it is where interested
people will go to learn more about the behind-the-scenes, it was logical to add a
paragraph mentioning the names of all people having contributed to the project,
just like it is available on GitHub.

2.4.8 Redirecting to the previous page when logging in

When logging in, the system would redirect the user to the home page of the
website. This felt inconvenient and not logical in some cases. For example,
when trying to access the admin page of a form without being logged in, the
website would prompt you to login in order to determine whether or not you are
able to see the admin info of the form. If you were to log in, the most logical
thing would be to redirect you to that form page so that if you have access you
can see the content and if not you get an error, but going back to the home
page is just cumbersome.

To change that, we needed a way to keep the state of where the user was
on the website when clicking on the Login button, so that we could go back
there when we would return from Tequila. Keeping global state, track and save
information about each user’s session can easily be done by using HTTP cookies.
Now, when clicking on the Login button, the corresponding handler will add a
cookie that contains the path needed to redirect and that will expire after 2
minutes which should be enough time to build a connection. When the Tequila
server answers and we are able to log in the user, the front-end then gets the
cookie and navigates back to the address contained in it. If the cookie is not
found because of an issue (Expiration for example), then by default the home
page will be accessed instead.

2.4.9 Add a confirmation before logging out

At the beginning of the semester, we noticed that when a user try to log out they
can do it too easily. But, if they log out while filling a form, then everything
done would be lost.
To avoid this behavior, we wanted to be able to add a confirmation before logout.
This way, the user will be aware that logging out will make them loose everything
done so far. To do this, we first create a new component: a warning modal.
This component is designed so that it can be used later for other purposes. It
has been mainly implemented using an already available ”Dialog” component
by HeadlessUI. It takes 4 arguments:

• isShown : is true when the pop up is displayed

• setIsShown : a function that takes a boolean and sets isShown to true
when the user click on the logout button

28



Figure 2.21: The warning modal when trying to log out.

• action : the action taken when clicking on the ”continue” button. Here
the action is logout.

• message : the message that is displayed and that warns the user of the
behavior caused by the action and propose them to export the form if
needed.

2.4.10 Fix setting a role and deleting a role to a user

When wanting to add a role or delete one, the behavior was unexpected. We
needed to refresh the page so that the user is added or deleted.
To fix this, we used the same mechanism as for the proxy editing: instead
of using the fetch function to make the right request, we create a function
sendFetchRequest which calls the component usePostCall in which we handle
differently the request.
Also, we realized that we had a problem deleting the last user. And to change
that, we made a minor change on the AdminTable file. In fact, at the beginning
when users change there was a useEffect that called setScipersToDisplay

when the length of the users array is not null, but it didn’t handle the case when
the length was null so we added it.

2.4.11 Result Types

To make it even easier to understand, each question is now displayed with the
Icon corresponding to its type next to its Title.

29



Figure 2.22: An example of a Rank question result with the Rank Icon next to
the title.

2.4.12 Edit a node

On the admin page, if you have the appropriate permissions, you can manage
nodes. However, when trying to edit an existing node, you can only edit the
proxy mapping to it, not the node itself. We are providing a way to modify that
as well.

Figure 2.23: Before we could only modify the proxy address.

30



Figure 2.24: Now we can modify the node itself and the proxy address.

2.4.13 Ensure the verifiability of ballots in the front-end

Something that came up during the security audit was that there is no verifi-
ability process in place for the ballots. Verifiability refers to the ability of an
end-user to check whether their actions were taken into consideration or not.
In the project, we could already verify whether a form that we created was suc-
cessfully transmitted in the blockchain. When sending the form, the front-end
would show the form creator a hash of its form, that could then be used to check
in the blockchain if a transaction with the same hash is present.

To add this for the ballots we decided to put in place the same mechanism:
when sending the ballot to the back-end, the front-end shows a popup with the
hash of the ballot.

31



Chapter 3

Conclusion

3.1 Summary

Most changes that we managed to do were in order to improve usability. This
made the most sense with the added intention of launching the application as
soon as possible. We were still able to ensure more accessibility by answer-
ing EPFL’s request to internationalize the system such that it is available in
the school’s three main languages. We improved robustness by improving the
authorization mechanism with Casbin and correcting unwanted behaviors.

3.2 User Testing and Feedback

Throughout the semester, to have an outside perspective, we continuously asked
colleagues for feedback. At the end of the semester, we asked a few friends,
family members and colleagues to test the website with all the new features
we added. The idea behind this testing was to let them discover the website,
prompting them to do some essential tasks like vote in a form, create their own
form, but still letting them use the features freely. As they tested, we asked
them for feedback, here are the most important parts :

• A Data Science student pointed out that the export feature for the results
was very useful, but that treating data in a JSON format might not be
easy. He therefore suggested to add the possibility to download the results
in a different format such as CSV.

• A student found that it might be useful to sort the forms in some other
ways than by status. For example, maybe sort the forms to only show the
ones in which the user did not vote yet, or to only display the forms they
created.

• When creating a form, the user was uncertain about the purpose of the
various titles. They also struggled to understand how to add a new ques-
tion. To address this, the user suggested adding a button labeled ’add a

32



question’ in the top right corner to make the process more clear. Addition-
ally, the names of the different types of questions were not immediately
understandable.

• The three languages within the website were well received, however a
little inconvenience is that we are not able to see which language we are
currently in. Multiple users suggested to display the flag of the current
language on the website.

• During the form creation, a user suggested a different approach to fill the
three languages: Instead of having buttons controlling all fields, we could
maybe use a dropdown showing the translation already filled in and the
ones still empty.

• The user accidentally clicked the button to create the form before com-
pleting it, and was disappointed to discover that they could not make any
changes to the form after it was created.

• When creating a form, a user received an error saying its form was in-
complete and could therefore not be created, but as they added many
questions and subjects, they were confused as to where the error came
from. A better error display could have helped highlight the locations
where the form was incomplete.

• Overall, the users really appreciated that they can enter the 3 languages
and it seems really instinctive to have the language that we are filling
displayed.

• Some users found it very interesting to have a grouped result and an
individual one. It was quite intuitive for them and they thought it could
be very useful for some cases.

• A computer scientist pointed out to us that creating a form can be difficult
for someone that doesn’t have any knowledge on blockchains, as there isn’t
explanation as to what the system is doing at each step.

33



3.3 Possible Improvements and Features to add

Although we are really happy with the results obtained after this semester,
we still have thought of possible ways in which we could make the Web App
better. We will try to work on some of these improvements until the presentation
because some of them seem quite important.

• We started this project without any experience in web development, we
therefore spent our summer learning about JavaScript, Typescript, and
React. It took us a lot of time to understand the relationship between
the files and how the features worked because of the lack of the types of
elements. Therefore, the first step to improve the programmers’ experience
is to try to use the strict mode of TypeScript as much as possible. We also
noticed a lack of documentation for the web part. It is very difficult to
understand how the system works just by looking at the code without any
explanations. Therefore, the second step is to add some documentation
to explain in details how authorization works, how a form is created, and
finally how the ballots and results are displayed.

• Right now, the individual results can be seen by anyone. A possible en-
hancement would be to make them only available to admins just like in
other form tools.

• As mentioned before, the new authorization mechanism does not require
the role feature, so we deleted all references to it. However, we did not
have time to update the admin page that displays a list of users with their
roles.

• For now, we need to add manually user’s authorizations except the ones
for forms. It would be useful to have a feature that allows us to add users
and assign them a set of permissions directly on the website. We can do
something similar of what was done for managing users roles but instead
of giving a role we can give a set of authorizations.

• Improve the way we can create a form in the 3 languages. Although we did
our best to finish this feature we realize that there still some improvements
to add. Right now, someone can enter partially the element of a language
and only these elements will be displayed. So for example if you only add
the title in french it will be the only thing displayed. There is two possi-
bilities to improve this, either make it impossible to only enter partially
a language information by changing the configuration validation file
or displaying the English values if not all the information is available.
Also, we still have some bugs that break the shuffling when we vote using
different languages. Finally, it seems like importing a JSON file to con-
tinue creating a form is not working too. We have to be able to parse the
elements before uploading them

34



• Modularize the code, especially for the languages part. In fact, it can be
a possible improvement to allow the user to enter it’s own language or
simply to be able to add a new language.

• Find a way to make a ”draft” of the forms so that upon logging out, forms
that are not finished yet could be resumed later. This is already possible
via the JSON export, but other possibilities could be explored.

• As explained before, we had three roles to identify users. The Admin and
the Operator are perfectly reproduced by our new system. However, the
third role that is Voter, was used in the sense that not all people can vote.
This gives an issue that someone needs to decide who can and cannot
vote. This can be done by users with the right to manage other users.
Furthermore, we noticed that one may want that only a group of users
can vote for its form. This new behavior was not supported but it could be
good to have it. The idea is to extend the actual authorization mechanism
by using a new model, like a group based access control so that we can
give the right of voting to a group for example.

• As pointed out by the security audit, we could also show the hash of its
ballot on the form’s Admin page, but this could potentially result in a
cumbersome display.

• Find a better way to ensure verifiability. As ballots or forms can be
long, their hash most of the time take more place than a little ”Success!”
popover. Therefore their display is not guaranteed to be elegant and
convenient. This was planned to be investigated this semester but some
more pressing enhancements came in the meantime.

35



Bibliography

[1] Node Cabsin. “Sequelize Adapter”. In: (Dec. 2022). url: https://github.
com/node-casbin/sequelize-adapter.

[2] Casbin. “Casbin”. In: (Jan. 2023). url: https://github.com/casbin/
casbin.

[3] DeepL. “DeepL Translator”. In: (2019). url: https://www.deepl.com/
translator.

[4] Docker. “docker/compose”. In: (May 2021). url: https://github.com/
docker/compose.

[5] i18next. “react-i18next”. In: (Jan. 2023). url: https://github.com/
i18next/react-i18next.

[6] DEDIS Lab. “D-Voting”. In: (Dec. 2022). url: https://github.com/
dedis/d-voting.

[7] Tailwind Labs. “tailwindlabs/headlessui”. In: (Dec. 2022). url: https:
//github.com/tailwindlabs/headlessui.

[8] Tailwind Labs. “tailwindlabs/tailwindcss”. In: (Oct. 2022). url: https:
//github.com/tailwindlabs/tailwindcss.

[9] Eric Olive. “Designing Better Tooltips For Mobile User Interfaces”. In:
(Feb. 2021). url: https://www.smashingmagazine.com/2021/02/
designing-tooltips-mobile-user-interfaces/.

[10] PostgreSQL. “postgres/postgres”. In: (Oct. 2019). url: https://github.
com/postgres/postgres.

[11] Jason Quense. “jquense/yup”. In: (July 2020). url: https://github.
com/jquense/yup.

[12] Sofia Quintero. “Tooltips: your secret weapon for improving feature dis-
covery”. In: (Dec. 2018). url: https://uxdesign.cc/tooltips-your-
secret-weapon-for-improving-deature-discovery-e1c380562f2e.

[13] Jared Toporek. “Why the number input is the worst input”. In: (Sept.
2022). url: https://stackoverflow.blog/2022/09/15/why- the-
number-input-is-the-worst-input/.

36

https://github.com/node-casbin/sequelize-adapter
https://github.com/node-casbin/sequelize-adapter
https://github.com/casbin/casbin
https://github.com/casbin/casbin
https://www.deepl.com/translator
https://www.deepl.com/translator
https://github.com/docker/compose
https://github.com/docker/compose
https://github.com/i18next/react-i18next
https://github.com/i18next/react-i18next
https://github.com/dedis/d-voting
https://github.com/dedis/d-voting
https://github.com/tailwindlabs/headlessui
https://github.com/tailwindlabs/headlessui
https://github.com/tailwindlabs/tailwindcss
https://github.com/tailwindlabs/tailwindcss
https://www.smashingmagazine.com/2021/02/designing-tooltips-mobile-user-interfaces/
https://www.smashingmagazine.com/2021/02/designing-tooltips-mobile-user-interfaces/
https://github.com/postgres/postgres
https://github.com/postgres/postgres
https://github.com/jquense/yup
https://github.com/jquense/yup
https://uxdesign.cc/tooltips-your-secret-weapon-for-improving-deature-discovery-e1c380562f2e
https://uxdesign.cc/tooltips-your-secret-weapon-for-improving-deature-discovery-e1c380562f2e
https://stackoverflow.blog/2022/09/15/why-the-number-input-is-the-worst-input/
https://stackoverflow.blog/2022/09/15/why-the-number-input-is-the-worst-input/


Appendix A

Individual JSON export
example

Figure A.1: An example of question.

37



1 {

2 "Title": "Please give your opinion",

3 "NumberOfVotes": 3,

4 "Results": [

5 {

6

7 "Title": "Tough choices"

8 },

9 {

10 "Title": "Which cafeteria serves the best coffee ?",

11 "Results": [

12 {

13 "Candidate": "Esplanade",

14 "Percentage": "55.56%"

15 },

16 {

17 "Candidate": "Giacometti",

18 "Percentage": "83.33%"

19 },

20 {

21 "Candidate": "Arcadie",

22 "Percentage": "83.33%"

23 },

24 {

25 "Candidate": "Montreux Jazz Cafe",

26 "Percentage": "77.78%"

27 }

28 ]

29 }

30 ]

31 }

Listing 1: The grouped JSON export on the example question.

38



1 {

2 "Title": "Please give your opinion",

3 "NumberOfVotes": 3,

4 "Ballots": [

5 {

6 "BallotNumber": 1,

7 "Results": [

8 {

9 "Title": "Tough choices"

10 },

11 {

12 "Title": "Which cafeteria serves the best coffee ?",

13 "Results": [

14 {

15 "Rank": "1",

16 "Choice": "Montreux Jazz Cafe"

17 },

18 {

19 "Rank": "2",

20 "Choice": "Arcadie"

21 },

22 {

23 "Rank": "3",

24 "Choice": "Esplanade"

25 },

26 {

27 "Rank": "4",

28 "Choice": "Giacometti"

29 }

30 ]

31 }

32 ]

33 },

34 {

35 "BallotNumber": 2,

36 "Results": [

37 {

38 "Title": "Tough choices"

39 },

40 {

41 "Title": "Which cafeteria serves the best coffee ?",

42 "Results": [

43 ...

Listing 2: An extract of the individual JSON export on the example question.

39



Appendix B

Translation

Figure B.1: The about page in English.

40



Figure B.2: The about page in French.

Figure B.3: The about page in German.

41


	Introduction
	Abstract
	Project Structure
	Motivation

	Designs and Implementations
	Authorization mechanism
	Context
	Basic model
	Casbin with an Adapter

	Extension of Front-end functionalities
	Context
	Hint Button
	Individual Results Display

	Translation and Internationalization (i18n)
	Context 
	Translation of the web page interface
	Internationalization: Create a form
	Internationalization : Ballot Display
	Internationalization : Display the results
	Mocks

	Other changes
	From election to form
	Modify the introduction image
	Fix cast vote button
	Modify the JSON filename
	MaxLength bug fix
	Change the favicon
	Add a contributors mention in the About page
	Redirecting to the previous page when logging in
	Add a confirmation before logging out
	Fix setting a role and deleting a role to a user
	Result Types
	Edit a node
	Ensure the verifiability of ballots in the front-end


	Conclusion
	Summary
	User Testing and Feedback
	Possible Improvements and Features to add

	Bibliography
	Individual JSON export example
	Translation

