
École Polytechnique Fédérale de Lausanne

D-voting - Security audit

Master Semester Project Report

Document owner Chen Chang Lew (sciper: 321016)

Supervisor Noémien Kocher, Pierluca Borsò-Tan, Simone

Responsible Prof. Bryan Ford

Table of content

Introduction 2

Motivation 2

Background 2

External Dependencies 3

Analysis Steps 3

Result 8

Verifiability Proposal 8

Future work 9

Conclusion 9

Reflection 10

1

Introduction
D-Voting is an e-voting platform based on the Dela blockchain. It uses state-of-the-art protocols
that guarantee the privacy of votes and a fully decentralized process. This project was born in
early 2021 and has been iteratively implemented by EPFL students under the supervision of
DEDIS members.

Motivation
D-voting project aims to launch and provide service to EPFL users in 2023. My main job is to
conduct a security analysis for this open-source project. Conducting a security analysis in this
project is important for several reasons. First and foremost, it helps protect the users of the
project by identifying and addressing potential vulnerabilities that could be exploited by
malicious actors. It also helps protect the reputation and integrity of the project by demonstrating
a commitment to security and responsible development practices. Additionally, it can improve
the overall quality and stability of the project by identifying and addressing potential issues
before they become widespread. Overall, conducting a security analysis on this project is a
critical step in ensuring that the project is safe, reliable, and trustworthy for all users before we
launch this service.

Background

D-voting basic architecture is shown as follows:

2

https://github.com/dedis/dela

The d-voting system itself is divided (roughly) into two “planes”, or groupings of components, the
following table describes each plane, and groups the aforementioned components.

Plane Description Components

Web Plane Web Plane is focused on the end-user journey. It controls the
state of the election and the user authority.

Web Frontend,
Web Backend,
Database

Blockchain
Plane

The blockchain plane guarantees the privacy of voters and a
fully decentralized process to store the encrypted vote and the
transactions. The nodes are public thus anyone can view and
verify the states on the nodes.

Proxy,
Blockchain
node, Smart
Contract, DPKG

External Dependencies
In software development, an external dependency is a library or module that is required for a
piece of code to run, but which is not part of the code itself. External dependencies are typically
included in a project through a package manager or by downloading the required files from a
remote repository.

Dependencies Usage Dependencies version

Dela blockchain is the structure of the d-voting blockchain node. d977167

Crypto library The crypto library utility from Dela v0.0.0-20221214133440-
d977167551e6

golang Use to write d-voting smart contract main logic 1.19 +

node source server environment V16.17.1 +

typescript Use to write d-voting web app main logic
(both frontend and backend)

V4.5.5 +

TLS Communications transfer over TLS Organization: Let's
Encrypt

TLS 1.3, X25519,
AES_256_GCM

Analysis Steps
1. Investigate the user flow of the system.

I created several user flow graphs to help visualize the steps that users would take to perform
several actions. I followed a process of defining the task or goal, identifying the necessary
steps, creating a visual representation using a flowchart tool, and reviewing and revising the
graph to ensure accuracy and effectiveness. These user flow graphs were a valuable resource

3

https://github.com/dedis/dela/commit/d977167551e6c2a5ea95ebbd4e52242a63a70c0c
https://pkg.go.dev/go.dedis.ch/dela@v0.0.0-20221214133440-d977167551e6/crypto
https://pkg.go.dev/go.dedis.ch/dela@v0.0.0-20221214133440-d977167551e6/crypto

for understanding how users navigate and interact with our product, and they helped inform the
design and development process. All the user flow graphs are in the appendix pages on the
security report page

2. Apply SNYK to the d-voting (check for third-party libraries).

Snyk is a software tool that helps developers find and fix known vulnerabilities in the
open-source libraries and dependencies they use. Snyk can be used to scan projects for
vulnerabilities, and it can also be integrated into the development process to help prevent the
inclusion of vulnerable dependencies in the first place. Snyk is designed to work with a variety of
programming languages and package managers, including npm, Maven, and pip.

I apply SNYK to the d-voting repository. It sends weekly reports about the known threats of
third-party library dependencies, and it can even create PR automatically for us.

4

https://docs.google.com/document/d/1pRPwrqnLduEiI38bIa62iUND_Pq1b5WTVkBaPQtOHb0/edit?usp=sharing

3. Add “security.txt” to the d-voting codebase.
“security.txt” is a file that can be placed in the root directory of a website to provide a way for
security researchers to report security vulnerabilities they discover to the website's owner. The
file should contain contact information, such as an email address or other means of
communication, that researchers can use to report vulnerabilities. The purpose of security.txt is
to provide a standard way for researchers to report vulnerabilities in a responsible manner,
rather than publicly disclosing them or exploiting them for malicious purposes. It is a way for
website owners to encourage responsible disclosure of security issues and to make it easier for
researchers to report vulnerabilities to them.

4. Inspect the proxy’s code.
After Defining all the user flow, I start looking at the proxy codebase. A proxy offers the mean for
an external actor such as a website to interact with a blockchain node. It is a component of the
blockchain node that exposes HTTP endpoints for external entities to send commands to the
node. The proxy is notably used by web clients to use the voting system.

5

https://securitytxt.org/
https://github.com/dedis/d-voting/blob/main/web/frontend/public/.well-known/security.txt
https://github.com/dedis/d-voting/tree/main/proxy

I am able to find some technical debts that can be fixed to provide better readability to the code.
- Technical Debt - verify signature before execute request #210
- Technical Debt - unclear/wrong comment #213
- Technical Debt - variable name "buff, formIDBuf, formIDBuff, formID" not consistent #214

5. Inspect the DKG’s code.
The DKG service allows the creation of a distributed key pair among multiple participants. Data
encrypted with the key pair can only be decrypted with the contribution of a threshold of
participants. This makes it convenient to distribute trust in encrypted data. In the D-Voting
project, we use the Pedersen version of DKG.
The DKG service needs to be set up at the beginning of each new election because we want
each election to have its own key pair. Doing the setup requires two steps: 1) Initialization and
2) Setup. The initialization creates new RPC endpoints on each node, which they can use to
communicate with each other. The second step, the setup, must be executed on one of the
nodes. The setup step starts the DKG protocol and generates the key pair. Once done, the
D-Voting smart contract can be called to open the election, which will retrieve the DKG public
key and save it on the smart contract.

I am able to find some technical debts and Threats for DKG:
- Technical Debt - check lenAddrs before sending getPeerKey #216
- THREAT - Denial of Service, Dkg public key will always return false if an adversary

compromise one device. #217
- Technical Debt - Encrypt function in DKG && Marshall ballot function in smart contract is

not used anymore #218
- Technical Debt - Duplicate function getForm() #219
- Technical Debt - Need refactor in dkg & shuffler #220

6

https://github.com/dedis/d-voting/issues/210
https://github.com/dedis/d-voting/issues/213
https://github.com/dedis/d-voting/issues/214
https://github.com/dedis/d-voting/issues/216
https://github.com/dedis/d-voting/issues/217
https://github.com/dedis/d-voting/issues/217
https://github.com/dedis/d-voting/issues/218
https://github.com/dedis/d-voting/issues/218
https://github.com/dedis/d-voting/issues/219
https://github.com/dedis/d-voting/issues/220

6. Inspect the shuffler’s code.
The shuffling service ensures that encrypted votes can not be linked to the user who cast them.
Once the service is set up, each node can perform what we call a "shuffling step". A shuffling
step re-orders an array of elements such that the integrity of the elements is guaranteed (i.e no
elements have been modified, added, or removed), but one can't trace how elements have been
re-ordered.

I am able to find some technical debts and Threats for shuffler:
- Technical Debt - unclear/wrong comment #213
- Technical Debt - Duplicate function getForm() #219
- Technical Debt - Need refactor in dkg & shuffler #220
- Technical Debt - change loop and sleep to channel + ctx timeout to increase readability

of code. #221
- Technical Debt - shouldn't use fingerprint function for pseudorandomness because it is

not efficient. #244

7. Inspect the smart contract’s code.
In the D-Voting system, a single D-Voting smart contract handles the elections. The smart
contract is written in Golang. The smart contract ensures that elections follow a correct workflow
to guarantee desirable properties such as privacy. For example, the smart contract won't allow
ballots to be decrypted if they haven't been previously shuffled by a threshold of nodes.

I am able to find some technical debts and threats for smart contract:
- Technical Debt - change legacy structure "CreateForm" #212
- Technical Debt - variable name "buff, formIDBuf, formIDBuff, formID" not consistent #214
- Technical Debt - Encrypt function in DKG && Marshall ballot function in smart contract is

not used anymore #218
- Technical Debt - shouldn't use fingerprint function for pseudorandomness because it is

not efficient. #244
- THREAT - Frontend create form didn't check for the maximum length of the form #249
- THREAT - Election will not be able to reveal the result if anyone submits a fake vote.

#250
- THREAT - ShuffleThreshold shouldn’t be used as the nbrSubmissions threshold #251

8. Inspect the web backend’s code.
The web backend is built with Typescript and runs with NodeJs. The web backend handles
authentication and authorization. Some requests that need specific authorization are relayed
from the web frontend to the web backend. The web backend checks the requests and signs
messages before relaying them to the blockchain node, which trusts the web backend. The web
backend has a local database to store configuration data such as authorizations. Admins use
the web frontend to perform updates. The blockchain node only trusts the backend as a source
of data

I am able to find some technical debts and threats for web backend:
- Technical Debt - Remove point & public key related in web backend since we didn't use

it. #245

7

https://github.com/dedis/d-voting/issues/213
https://github.com/dedis/d-voting/issues/219
https://github.com/dedis/d-voting/issues/220
https://github.com/dedis/d-voting/issues/221
https://github.com/dedis/d-voting/issues/221
https://github.com/dedis/d-voting/issues/244
https://github.com/dedis/d-voting/issues/244
https://github.com/dedis/d-voting/issues/212
https://github.com/dedis/d-voting/issues/214
https://github.com/dedis/d-voting/issues/218
https://github.com/dedis/d-voting/issues/218
https://github.com/dedis/d-voting/issues/244
https://github.com/dedis/d-voting/issues/244
https://github.com/dedis/d-voting/issues/249
https://github.com/dedis/d-voting/issues/250
https://github.com/dedis/d-voting/issues/250
https://github.com/dedis/d-voting/issues/251
https://github.com/dedis/d-voting/issues/245
https://github.com/dedis/d-voting/issues/245

- THREAT - All the election stages can be ignored by malicious node #247
- THREAT - A user can vote multiple times (count as multiple votes) in an election. #248
- THREAT - A user who is not an admin or operator cannot vote. #253

9. Inspect the web frontend’s code and pages.

The web frontend is a web app built with React. It offers a view for end-users to use the
D-Voting system. The app is meant to be used by voters and admins. Admins can perform
administrative tasks such as creating an election, closing it, or revealing the results. Depending
on the task, the web frontend will directly send HTTP requests to the proxy of a blockchain
node, or to the web backend. The end user needs a web-frontend to perform every action
related to the voting services

I am able to find some technical debts and threats for the web frontend:
- THREAT - The public/private key of the election is changed by the Adversary #246
- THREAT - Frontend create form didn't check for the maximum length of the form #249
- THREAT - Logout will not clear all the sessions in the browser #252

Result
I have created a security report that includes a detailed threat model and identifies potential
security risks, as well as strategies for mitigating them. To address these risks, I have taken
necessary steps and will continue to monitor the system to ensure its ongoing protection.

During my audit, I identified a total of 9 security issues and 11 technical debt issues. To track the
resolution of these issues and ensure that they are properly addressed, I have created
corresponding issues in GitHub.

Verifiability Proposal

Upon initial review, I assumed that our d-voting system had a mechanism in place for users to
verify their cast ballots. However, upon further analysis, I discovered that this feature had not yet
been implemented. As a result, I have added documentation to GitHub outlining our plan for
adding verifiability to the system and detailing the steps required to do so.

step Component involves Descriptions

1 Web Frontend Edit the submit vote function
- hash the encrypted ballot and shows it to the user.

2 Blockchain Node Add users’ hash of encrypted ballot to each election

8

https://github.com/dedis/d-voting/issues/247
https://github.com/dedis/d-voting/issues/248
https://github.com/dedis/d-voting/issues/253
https://github.com/dedis/d-voting/issues/246
https://github.com/dedis/d-voting/issues/249
https://github.com/dedis/d-voting/issues/252
https://docs.google.com/document/d/1pRPwrqnLduEiI38bIa62iUND_Pq1b5WTVkBaPQtOHb0/edit?usp=sharing
https://github.com/dedis/d-voting/issues/created_by/Flamewind97
https://github.com/dedis/d-voting/blob/main/docs/verifiability_doc.md
https://github.com/dedis/d-voting/issues/239
https://github.com/dedis/d-voting/issues/240

- edit API "/evoting/forms/{formID}", add the hash of the ballot
to the form structure..

3 Web Frontend Edit the form details page to show the hash of the ballot.
- A user can select an election to see its details.
- In the detail page, it shows the voter and the hash of their

ballot.
- Users can check if the hash they received is the same as the

hash on the details.

Future work
The following items represent potential areas for further security analysis and improvement:

1. Conduct a review on Dela and Kyber crypto package to identify any additional security
risks because we assume them to be safe in the security report.

2. Review and add more security measure tools for d-voting to ensure that it meets current
security best practices.

3. Conduct regular security assessments to identify and address any new or emerging
security threats.

Conclusion
My main job for conducting security analysis for d-voting can be summarize follows:

1. Apply security scanning tools SNYK to help us to identify third party libraries
vulnerabilities and how to mitigate them.

2. Add securitytxt in codebase to provide a standard way for researchers to report
vulnerabilities in a responsible manner, rather than publicly disclosing them or exploiting
them for malicious purposes.

3. Inspect the whole codebase and identified a total of 9 security issues and 11 technical
debt issues. Some of these risks have been mitigated by our colleagues, while the
remaining risks have been documented and will be addressed in future updates.

a. Security Issues:
T1: The public/private key of the election is changed by the Adversary
T2: All the election stages can be ignored by malicious node
T3: A user can vote multiple times (count as multiple votes) in an election.
T4: DKG puclic key will always failed if an adversary compromise one device
T5: Frontend create form didn't check for the maximum length of the form
T6: Election will not be able to reveal the result if anyone submits a fake vote
T7: ShuffleThreshold shouldn't be used as the nbrSubmissions threshold
T8: Logout will not clear all the sessions in the browser
T9: A user who is not an admin or operator cannot vote.

b. Technical Debts:
TD1: verify signature before execute request (proxy)

9

https://github.com/dedis/d-voting/issues/241
https://github.com/dedis/d-voting/issues/246
https://github.com/dedis/d-voting/issues/247
https://github.com/dedis/d-voting/issues/248
https://github.com/dedis/d-voting/issues/217
https://github.com/dedis/d-voting/issues/249
https://github.com/dedis/d-voting/issues/250
https://github.com/dedis/d-voting/issues/251
https://github.com/dedis/d-voting/issues/252
https://github.com/dedis/d-voting/issues/253
https://github.com/dedis/d-voting/issues/210

TD2: change legacy structure "CreateForm" (smart contract)
TD3: unclear/wrong comment (proxy, shuffling)
TD4: variable name "buff, formIDBuf, formID" not consistent
TD5: check lenAddrs before sending getPeerKey (dkg)
TD6: Encyrpt function in DKG && Marshall ballot function in smart contract is
not used (dkg, smart contract)
TD7: Duplicate function getForm() (dkg, shuffling)
TD8: Need refactor in dkg & shuffler (dkg, shuffling)
TD9: change loop and sleep to channel + ctx timeout to increase readability
of code (shuffling)
TD10: shouldn't use the fingerprint function for pseudorandomness because it
is not efficient. (shuffling, smart contract)
TD11: Remove point & public key in the backend since it is not used. (web
backend)

4. Adding vote verifiability design and planning.
V1: show vote hash to user after casting a vote. (web frontend)
V2: add users' hash of the encrypted ballot for each election. (smart contract, proxy)
V3: show hash of encrypted vote in election (web frontend)

Reflection
The semester project was a challenging but ultimately rewarding experience. I was honored to
have the opportunity to review the entire codebase of d-voting and gain a deeper understanding
of how each component works.

One of the most memorable aspects of the project was the discussion around the verifiability
feature in d-voting and how we arrived at the chosen solution. I also encountered some
challenges while working with the smart contract code, as I was not yet proficient in Dela.
However, with the help of Pierluca, Simone and Noémien, I was able to overcome these
challenges.

In the future, I hope to improve my technical documentation reading skills in order to more
quickly grasp the concepts underlying the code. Overall, I am grateful for the opportunity to work
on the semester project and feel that it has helped me grow both personally and professionally.

10

https://github.com/dedis/d-voting/issues/212
https://github.com/dedis/d-voting/issues/213
https://github.com/dedis/d-voting/issues/214
https://github.com/dedis/d-voting/issues/216
https://github.com/dedis/d-voting/issues/218
https://github.com/dedis/d-voting/issues/218
https://github.com/dedis/d-voting/issues/219
https://github.com/dedis/d-voting/issues/220
https://github.com/dedis/d-voting/issues/221
https://github.com/dedis/d-voting/issues/221
https://github.com/dedis/d-voting/issues/244
https://github.com/dedis/d-voting/issues/244
https://github.com/dedis/d-voting/issues/245
https://github.com/dedis/d-voting/issues/245
https://github.com/dedis/d-voting/issues/239
https://github.com/dedis/d-voting/issues/240
https://github.com/dedis/d-voting/issues/241

