
École Polytechnique Fédérale de Lausanne

BFT Baxos: Robust and Efficient BFT Consensus using Random
Backoff

by Zhanbo Cui

Master Project Report

Prof. Bryan Alexander Ford
Project Advisor

Pasindu Nivanthaka Tennage
Project Supervisor

EPFL IC DEDIS
January 6, 2023

Chapter 1

Introduction

Consensus protocol can ensure distributed system nodes agree on a unique value from their
proposed values if all the nodes follow the protocol correctly. It has four properties: validity,
integrity, agreement and termination[1]. However, some nodes might not follow the protocol.
They might omit to send messages or send contradicting messages to other nodes. If a node
behaves arbitrarily, it is called a byzantine node. BFT consensus protocol should allow all correct
nodes to reach a common decision despite the byzantine fault.

For liveness reasons in consensus protocol, most BFT consensus protocols is leader-based.
For instance, PBFT[2] use a fixed leader to avoid contention to guarantee liveness and Hotstuff[4]
use a rotating leader to avoid contention to guarantee liveness. However, leader-based consensus
might still be a risk of liveness loss in the public network. The adversary can carefully analyze the
network traffic and know who the leader node is, due to the leader node has massive message
exchange with other nodes in the cluster. The adversary can perform DDoS attack on the leader
node to delay its performance. Since the nodes of cluster always use a timer to measure if
the leader node is alive, the delayed correct leader might be demoted and lose the ability to
coordinate the consensus process. So the leader-based consensus might not be able to guarantee
progress in the public network where an adversary exists[3].

BFT Baxos is a leader-less BFT consensus inspired by random backoff in CSMA. We use
random exponential backoff to avoid contention to guarantee liveness and use 3 phases and
quorum certificate to guarantee safety. We use Byzantine Paxos as the baseline and make two
novel contributions to this project. Aadapt Byzantine Paxos with quorum certificate to decrease
the complexity of communication. Meanwhile, adapt Byzantine Paxos with a random exponential
backoff mechanism as a leader replacement. This work is never explored before.

The rest of the report is organized as follows. Chapter II presents BFT Baxos algorithm design,
pseudocode, the proof of safety and liveness. Chapter III describes our Golang implementation
of BFT Baxos and the evaluation. Chapter IV discuss the future work.

2

Chapter 2

Design

2.1 System Model

We assume the network is partially-synchronous, An unknown GST exists such that once the GST
is reached, there is an upper bound on message transmission from one node to another node.

We can tolerate the most f byzantine fault node within a cluster of n = 3f+1 nodes, since our
BFT Baxos is based on Byzantine Paxos.

We use threshold signature to form quorum certificate, so we assume it can only be combined
when having majority (2f+1) valid partial signature. f malicious nodes can not combine to a valid
quorum certificate.

2.2 The BFT Baxos Algorithm

BFT Baxos is three phases consensus as Byzantine Paxos to achieve Byzantine fault tolerance.
But the difference with Byzantine Paxos, which requires using two broadcasts to ensure safety
properties, BFT Baxos leverages quorum certificates to convince Acceptors, and only the Proposer
needs to broadcast. This way can reduce the complexity of communication and guarantee safety
properties at the same time. As a leader-less consensus, every BFT Baxos node can propose
freely, but we need to handle contention when more than one proposer propose at the same
time. Inspired from random backoff in CSMA. We ask the proposer back off for a random time
to prevent further collisions if Acceptors notice there are concurrent requests for the same
consensus instance. Try to achieve every node can have the fair share for the shared resource and
improve the resilience from changing network delays. Our REB mechanism guarantee eventually
there is one Proposer successfully commit his value.

2.3 Safety in BFT Baxos

The following is a description of how the three phases BFT Baxos works to guarantee safety:
a)Prepare - Promise: A node who wants to propose a new value initiate consensus by broad-

casting a Prepare message with a ballot number to all Acceptors. The Acceptors send a Promise

3

message to the Proposer, if they have not promised any Prepare message with a higher or equal
ballot number than the ballot number received in the Prepare message. If Acceptors has pre-
viously accepted any value, they need to piggyback this value and the corresponding ballot
number for this value in the Promise message. Considering that we need to implement Byzantine
fault tolerance, to convince the Proposer, Acceptors also need to attach a PreAccept quorum
certificate to prove the value they accepted is safe, we denote it as preAcceptQC. After the Pro-
poser collecting Promise messages from a majority (2f + 1 or more), Proposer can get a set of
Promise message, we denote this set as Promise set. If all Promise messages within Promise set
indicate that there is no previously accepted value, then the Proposer can select its new value as
Prepropose value, otherwise it should select the previously accepted value which has the highest
ballot number from the Promise set as Prepropose value.

b)Prepropose - Preaccept: In this phase, the Proposer who successfully forms a Promise set
can broadcast the preProposeValue with the same ballot number used in previous phase. The
Prepropose message need to contain the Promise set to convince Acceptors that the Prepropose
value is selected properly according to the Promise set. For an Acceptor accepts a Prepropose
message, firstly, the ballot number in the Prepropose message is equal or greater than the ballot
number that it previously promised. Secondly, the Promise set should be valid which should
satisfy two conditions: 1. the size of set should equal or greater than the majority; 2. the Promise
messages within Promise set are valid. Finally, the Prepropose value should be the value selected
according to the Promise set. Upon accepting a valid Prepropose message from the Proposer, Ac-
ceptors update their preaccept_ballot number, preaccept_value and generate a partial certificate
by signing on the tuple <preaccept_ballot, preaccept_value>. The Preaccept message sent to the
Proposer piggyback this partial certificate. The Proposer, upon receiving valid Preaccept message
from a majority of Acceptors, can combines the preAcceptQC. The preAcceptQC represents there
is a majority of Acceptors have preaccepted the value preproposed by the Proposer.

c)Propose - Accept: In this phase, the Proposer who successfully combines a preAcceptQC can
broadcast the proposeValue with the same ballot number used in previous phase. The Propose
message need to contain the successfully combined preAcceptQC. For an Acceptor accepts a
Propose message, firstly, the ballot number in the Propose message is equal or greater than the
ballot number that it previously promised. Secondly, preAcceptQC in the Propose message should
be valid. Finally, the tuple <propose_ballot, propose_value> in the Propose message should equal
to the tuple <preaccept_ballot, preaccept_value> which signed by a majority, the corresponding
multi-signature be placed in the preAcceptQC and can be verified. Upon accepting a valid
Propose message from the Proposer, Acceptors update their accept_ballot number, accept_value
and preAcceptQC, and generate a partial certificate by signing on the tuple <accept_ballot,
accept_value>. The Accept message sent to the Proposer piggyback this partial certificate. The
Proposer, upon receiving valid Accept message from a majority of Acceptors, can combines the
Accept quorum certificate, we denote it as acceptQC. The acceptQC represents there is a majority
of Acceptors have accepted the value proposed by the Proposer. Finally, Proposer can safely
commit the value it proposed and broadcast the Commit message which contains the acceptQC
to inform Acceptors commit previously accepted value safely.

To summarize, BFT Baxos leverage Promise set and two quorum certificates to ensure safety

4

properties in the Byzantine environment. Since BFT Baxos does not have the broadcast phase, the
Promise set exists to prevent malicious proposers from broadcasting contradictory Prepropose
messages to Acceptors. Meanwhile, The second phase exists to help Acceptors can provide a
proof(quorum certificate) in the first phase to convince the Proposer the value they previously
accepted is safe.

Figure 2.1: Three phases in BFT Baxos

2.4 Safety Proof in BFT Baxos

We now present the proof of safety properties in consensus for single instance BFT Baxos:
Validity: In BFT Baxos. For an Acceptor to decide on a value v, it should receive a commitValue

and an acceptQC associated with this value from the Proposer. The Acceptor can verify whether
the commitValue is valid through acceptQC. The proposer can combine a valid acceptQC only if it
receives at least 2f + 1 number of Accept message containing valid partial signatures from honest
Acceptors. This acceptQC can prove quorum honest nodes have accepted the proposeValue. For
the Acceptors to send the Accept message, they should have received the proposeValue attached
with a preAcceptQC. The preAcceptQC can prove the proposeValue is a valid value, so the honest
nodes can accept proposeValue safely. As the same as the acceptQC. The Proposer can combine
a valid preAcceptQC only if it receives at least 2f + 1 number of Preaccept messages containing
valid partial signatures from honest Acceptors. For the Acceptors to send the Preaccept messages,
they should have received the preProposeValue and a Promise set whose size is at least 2f +
1. This set can prove the validity of preProposeValue. As for the proposer to formulate a valid
Promise set, it should have received at least 2f + 1 Promise messages from Acceptors. Acceptors
indicate their previous preaccept_value and attach a preAcceptQC to prove this value is valid.
There are two cases to consider in this case; 1) All preaccept_value and preAcceptQC are nil in
the Promise messages so that the Proposer can select his proposal in the Prepropose message or
2) the preProposeValue is the value that has the highest ballot number in the Promise messages.

5

In the first case, the preProposeValue is the value proposed by this Proposer, so this value is valid,
hence the decided value is also proposed by this Proposer. In the second case, the Proposer
selects a unique value that was previously accepted by one or many Acceptors. Since there is
a preAcceptQC attached to this preProposeValue, so this preProposeValue is valid. We can use
the same argumentation mentioned before to trace this value should be proposed by a previous
Proposer with a smaller ballot number. Hence, the committed value is also the value proposed
by a Proposer. Hence the validity property holds.

Agreement: To prove the agreement property, it is sufficient to prove that if an Acceptor A
has accepted value v in ballot number i, then no value v’ != v can be decided in any smaller ballot
number. We can use induction to prove it.

Assume that Acceptor A has accepted this value v in ballot number i. for this to happen, A
must have received a Propose message from a Proposer. The Proposer must attach a preAcceptQC
with this Propose message, this preAcceptQC ensures the v in the Propose message is preaccepted
by quorum size Acceptors. And the condition for a Acceptor to preaccept v is receiving a pre-
proposeValue v and a Promise set ; meanwhile the preAcceptQCs in the Promise set indicate two
cases: 1) no value preaccepted before, then the agreement property is proved, because there is
no value different from v that is preaccepted/accepted in a smaller ballot number, hence there is
no value will be decided differently from v in any smaller ballot number. 2) a value v with ballot
number j is preaccepted by quorum Acceptors(j is smaller than i but is the highest ballot number
collected in the Promise set). There is no such previous ballot number j for i when i = 0 since we
start to propose at ballot number 0. In turn, when i != 0, there is no ballot number k where j > k
> i could make another preproposeValue v’ be accepted. Since if value v has been preaccepted
by quorum Acceptors at ballot number j, there is always an intersection of Acceptor sending
the preAcceptQC of v at ballot number j+1 to formulate the Promise set, so the preproposeValue
will be v at ballot number j+1. And so on for j+2,...k-1,k, the preproposeValue will always be
v. Hence there is impossible for Acceptors to preaccept another v’, hence the Proposer can’t
combine a new preAcceptQC of v’ through the partial signatures, hence the value v’ will never be
accepted. By using the inductive hypothesis on ballot number j to deduce there is no value v’ !=
v can be accepted in any ballot number smaller than j (ballot numbers 0, . . . , j - 1). This proves
agreement.

Integrity: The integrity property holds in single-choice BFT Baxos. There is a boolean variable
decided which is updated just once from false to true when receiving the Commit message at the
side of the Acceptor and broadcasting the Commit message at the side of Proposer. So each node
only decides the value once.

2.5 Liveness challenges in BFT Baxos

We leverage random exponential backoff (REB) to guarantee the termination when there are
multiple competing proposals from different proposers. The proof of termination has been
proved in the Baxos paper[3]. Since BFT Baxos is a three phases consensus, so we need to modify

6

the formula used to calculate backoff time in Baxos as following:

k ∗ 3l ∗RTT

Where k ∈ (0, 1) ∈ Q and l is the number of retries. We focus on the liveness chanllenges
from the Byzantine environment since malicous node might not generate k randomly and
increase l, ballot number monotonically, however our proof of termination is based on the
Proposer must backoff the time caculated from fomula honestly when contention happened.
We leverage VRF, quorum certificate, retry table, Byzantine-tolerant timestamp and backoff time
check mechanism to ensure the message proposed by the Proposer is "random backoff" under
the view of Acceptors.

2.5.1 Generate k randomly

we use the verifiable random function(VRF) to guarantee k is generated randomly and can be
verified. Proposer can use private key and the common seed to generate random number and
use the public key to generate k_proof for this random number. Proposer should use this k to
calculate the backoff time. When it complete the backoff and retry the Prepare-Promise phase,
this proposer should attach k and k_proof within Promise message. On the Acceptors side, they
can use the corresponding public key, the common seed and the proof to verify if the number
is generated randomly. Common seed at here can be a incremental sequence recognized by
all the node in the cluster, but in order to make the generation of k more unpredictable and
unmanipulable, we use the Byzantine-tolerant timestamp as the common seed, meanwhile,
this timestamp is also usefull in our backoff check mechanism. This idea is firstly proposed in
Byzantine Ordered Consensus[5] to guarantee the order commands in BFT SMR in a way that
respects a natural extension of linearizability. In our BFT Baxos, we don’t use it to coordinate the
order of consensus instances, but as common seed in VRF and use it to achieve backoff check
mechanism. An intuitive understanding of Byzantine-tolerant timestamp is that the median
timestamp within a set of 2f + 1 timestamps is might not come from the honest node, but it must
locate in the reasonable time interval. As for the seed of VRF, even if this timestamp come from
malicious node, it doesn’t matter for generating random k randomly. We will explain how to use
byzantine-tolerant timestamp to achieve backoff check mechanism in the later section.

2.5.2 Increase l monotonically

Since our network is partially-synchronous, we can transfer the responsibility for counting the
number of retries from the Proposer to the Acceptors. Each node in the cluster maintains a table
to record the number of retries for the other nodes. Each time a retry Prepare message is received,
the Acceptors increment the corresponding Proposer the number of retries in the table. When
the Proposer successfully commits the value, the Acceptors will also clear the number of retries
accordingly.

7

2.5.3 Increase ballot number monotonically

To achieve the monotonic increment of ballot number, we use the quorum certificate to restrict
the proposer from arbitrarily increasing its own ballot number. Acceptors always piggyback a
partial signature for next ballot number in the Prepare-Promise phase. So if Proposers don’t start
with ballot number 0, in other word, they need to attach with a nextBallotQC to prove the validity
of their ballot number when they retry. There are many strategies on how to determine the next
ballot number, the naive way is increasing only one on the previous ballot number.

2.5.4 Backoff check mechanism

Lastly, we need help honest Acceptors to know whether the Proposer indeed back off. When the
Proposer retry, it should include the timestamp set collected in the previous Prepare-Promise
phase in the new Prepare message, on the side of Acceptors, they can use receiving time minus
median timestamp within timestamp set to calculate out a time duration. This duration should
greater or equal to the backoff time calculated from the REB formula, if not, the Acceptors put the
message into a waiting buffer and wait for the time is reached. We ensure that the termination
property still hold in the Byzantine environment by ensuring that requests from malicious
Proposer are deferred through the backoff check mechanism.

receiving_time−median_timestamp ≥ k ∗ 3l ∗RTT +RTT

Figure 2.2: Random backoff check machenism

8

2.6 Pseudocode for BFT Baxos

Algorithm 1: BFT Baxos Prepare-Promise phase

1 Initialization of local variable:
2 retries := 0;
3 curBallot, promiseBallot, preAcceptBallot, acceptBallot := -1;
4 value, preAcceptValue, acceptValue, comiteValue := null;
5 preAcceptQC, acceptQC := null;
6 comitted := false;
7 promiseSet, timeStampSet, preAcceptSet, acceptSet := {};
8 k, kProof := nil;
9 retryTable := Map{};

10 nodeId;
11 Timer;
12 Proposer: onPropose(client_v)
13 curBallot += 1;
14 promiseBallot = curBallot;
15 value = client_v;
16 BroadCast Msg(PREPARE, promiseBallot, k, kProof, promiseSet, timeStampSet);
17 promiseSet = {};
18 timeStampSet = {};
19 Timer.start();

20 End;
21 All nodes: onMessage(PREPARE, prepareBallot, k, kProof, timeStampSet)
22 if ! isBackoff then
23 Wait for the backoff time
24 end
25 retryTable[proposer] += 1;
26 if promiseBallot < prepareBallot then
27 promiseBallot = prepareBallot;
28 contention = false;

29 else
30 contention = true;
31 end
32 timeStamp = Timer.Now();
33 Unicast Msg(PROMISE, contention, promiseBallot, acceptBallot, acceptValue,

preAcceptQC, timeStamp);

34 End;

9

Algorithm 2: BFT Baxos Prepropose-Preaccept phase

1 Proposer: onMessage(PROMISE, contention, ballot, lastAcceptBallot, lastAcceptValue,
lastPreAcceptQC, timeStamp)onCondition: promiseBallot == ballot

2 timeStampSet = timeStampSet ∪ timeStamp;
3 if isValidPromise AND !contention then
4 promiseSet = promiseSet ∪ PROMISE
5 end

6 End;
7 Proposer: onEvent(|promiseSet| >= 2f + 1)
8 Timer.cancel();
9 highestBallot, highestValue = HIGHESTBYBALLOT(promiseSet);

10 if highestValue != null then
11 preProposeValue = highestValue;
12 else
13 preProposeValue = value;
14 end
15 preProposedBallot = promiseBallot;
16 BroadCast Msg(PREPROPOSE, preProposedBallot, preProposeValue, promiseSet);
17 promiseSet = {};
18 Timer.start();

19 All nodes: onMessage(PREPROPOSE, preProposedBallot, preProposeValue, promiseSet)
20 if promiseBallot =< preProposedBallot then
21 contention = false;
22 if ! preProposeValueIsValidInPromiseSet then
23 return;
24 end
25 preAcceptBallot = preProposedBallot;
26 preAcceptValue = preProposedValue;
27 preAcceptSig = tsign(PREACCEPT, preAcceptBallot, preAcceptValue);
28 timeStamp = Timer.Now();
29 Unicast Msg(PREACCEPT, contention, preAcceptBallot, preAcceptValue,

preAcceptSig, timeStamp);

30 else
31 contention = true;
32 timeStamp = Timer.Now();
33 Unicast Msg(PREACCEPT, contention, preAcceptBallot, preAcceptValue,

preAcceptSig, timeStamp);

34 end

35 End;

10

Algorithm 3: BFT Baxos Propose-Accept phase

1 Proposer: onMessage(PREACCEPT, contention, ballot, preAcceptValue, preAcceptSig,
timeStamp)onCondition: preAcceptBallot == ballot

2 timeStampSet = timeStampSet ∪ timeStamp;
3 if isValidSig AND !contention then
4 preAcceptSet = preAcceptSet ∪ preAcceptSig
5 end

6 End;
7 Proposer: onEvent(|preAcceptSet| >= 2f + 1)
8 Timer.cancel();
9 preAcceptQC = tcombine(<PREACCEPT, preAcceptBallot, preAcceptValue>,

preAcceptSig ∈ preAcceptSet);
10 proposeBallot = preAcceptBallot;
11 proposeValue = preAcceptValue;
12 BroadCast Msg(PROPOSE, proposeBallot, proposeValue, preAcceptQC);
13 Timer.start();

14 All nodes: onMessage(PROPOSE, proposeBallot, proposeValue, preAcceptQC)
15 if promiseBallot =< proposeBallot then
16 contention = false;
17 if ! isValid(preAcceptQC) then
18 return;
19 end
20 acceptBallot = proposeBallot;
21 acceptValue = proposeBallot;
22 acceptSig = tsign(ACCEPT, acceptBallot, acceptValue);
23 timeStamp = Timer.Now();
24 Unicast Msg(ACCEPT, contention, acceptBallot, acceptValue, acceptSig,

timeStamp);

25 else
26 contention = true;
27 timeStamp = Timer.Now();
28 Unicast Msg(ACCEPT, contention, acceptBallot, acceptValue, acceptSig,

timeStamp);

29 end

30 End;

11

Algorithm 4: BFT Baxos Commit phase

1 Proposer: onMessage(ACCEPT, contention, ballot, acceptValue, acceptSig,
timeStamp)onCondition: acceptBallot == ballot

2 timeStampSet = timeStampSet ∪ timeStamp;
3 if isValidSig AND !contention then
4 acceptSet = acceptSet ∪ acceptSig
5 end

6 End;
7 Proposer: onEvent(|acceptSet| >= 2f + 1)
8 Timer.cancel();
9 acceptQC = tcombine(<ACCEPT, acceptBallot, acceptValue>, acceptSig ∈ acceptSet);

10 BroadCast Msg(COMMIT, acceptBallot, acceptValue, acceptQC);

11 All nodes: onMessage(COMMIT, commitBallot, commitValue, acceptQC)
12 if ! isValid(acceptQC) AND !comitted then
13 comitted = true;
14 commitValue = acceptValue;

15 end
16 End;

Algorithm 5: BFT Baxos Utility

1 Proposer: onEvent(TIMEOUT)
2 cleanup(promiseSet, preAcceptSet, acceptSet);
3 retries += 1;
4 k, kProof = Random-Backoff(retries, timeStampSet);

5 End;

12

Chapter 3

Implementation and Evaluation

3.1 Implementation

We implemented BFT Baxos using Golang language. This project focuses on implementing the
single instance version of BFT Baxos. We used Protobuf for serialization and deserialization
and employed gRPC for inter-node communication. As for the crypto part, we used ed25519
packages to implement signature and quorum certificate, meanwhile the VRF library we used is
also supported by ed25519 packages, since we can use the same set of public-private key pairs to
achieve VRF and quorum certificate function in BFT Baxos. In practice, we assume there is a third
party key distribution to responsible for key distribution, but in this project, we pre-generate
the key pairs for each node, and each node can read the information of public key of each node
in the cluster and the information of their own private key as they boot. We use the standard
time library to returns a Unix time, the number of seconds elapsed since January 1, 1970 UTC as
timestamp.

After the daemon process of node boot successfully, the node listen to different local ports
which is defined in configuration files. We also implemented a simple client side by using cobra
library. Users can connect to and send request to different nodes via client side command, this
also means different users could initiate the consensus process from different node concurrently.

3.2 Evaluation

This section evaluates the time to reach a single BFT Baxos instance in clusters of varying
numbers of nodes.

3.2.1 Experimental Setup

We designed three sets of tests, starting 4, 7 and 10 local nodes respectively, corresponding to the
cluster can tolerate 1, 2 and 3 malicious nodes. Then we send the consensus request by using
the client-side command to one of the node in the cluster, after waiting for the consensus to be
reached, we calculate the time it takes from the initiation of the request to receiving the reply of
the request. Each set of tests initiates ten requests and calculates the average time. All nodes start

13

on one machine, but listen on different local port numbers, we will make 5 pre- gRPC request
calls from client side before formally recording the data for each set of tests to avoid cold start
effects. The following section presents the result of the experiment.

3.2.2 Experimental Result

Number of Nodes Shortest Time(ms) Longest Time(ms) Average Time(ms)
4 4.18 4.92 4.47
7 5.52 6.44 6.02

10 6.35 7.60 7.10

Table 3.1: Time to reach consensus

Figure 3.1: Time to reach consensus

In each phase of BFT Baxos, only the Proposer broadcasts to all Acceptors. While the Acceptors
respond to the Proposer once with a partial signature to certify the vote or without partial
signature to certify the contention. As same as the Hotstuff, the authentication complexity of

14

BFT Baxos is O(n). Compared with PBFT, since BFT Baxos does not have broadcast phases, the
communication complexity is also O(n). The experimental results also demonstrate that the
time to reach consensus is linearly related to the number of nodes in the cluster. Therefore, BFT
Baxos has good scalability.

15

Chapter 4

Future Work

4.1 Multi-instance BFT Baxos

In this project, we only implement the single instance version of BFT Baxos. Although it is
straightforward to derive a multi-instance version but to achieve the BFT, we introduce many
other local variables (retry table, next ballotQC...), and how to coordinate these parameters to
work appropriately within different instances might bring some challenges. After the extension to
the multi-instance version, we also want to do more performance evaluation, including Workload
and DDoS Performance.

4.2 Different random seed strategies in VRF

We now use the Byzantine tolerance timestamp as the random seed for refreshing the VRF and
the Byzantine timestamp to implement a random backoff check mechanism. Building Byzantine
timestamp requires the Acceptors to tag a timestamp in the Promise message, Preaccept message
and Accept message. On the other side, each Proposer retry must carry a large set of timestamps.
In the case of intense conflict, this will take up much bandwidth. We can use some new strategy
as a random seed for refreshing the VRF, while applying the batch processing idea to the random
backoff check mechanism. To generate multiple k and calculate the corresponding multiple
backoff times at once timestamp exchange for the use of later backoff to reduce the number of
timestamps that need to be carried in the messages.

4.3 Clock synchronization

We know there is no perfect clock, and the nodes’ clocks will become increasingly out of sync as
the system runs. Since our BFT Baxos relies heavily on a random backoff mechanism to ensure
the termination property, we can periodically use Byzantine timestamps to synchronize the
clocks.

16

Bibliography

[1] Christian Cachin, Rachid Guerraoui, and Luıs Rodrigues. Introduction to reliable and secure
distributed programming. Springer Science & Business Media, 2011.

[2] Miguel Castro, Barbara Liskov, et al. “Practical byzantine fault tolerance”. In: OsDI. Vol. 99.
1999. 1999, pp. 173–186.

[3] Pasindu Tennage, Cristina Basescu, Eleftherios Kokoris Kogias, Ewa Syta, Philipp Jovanovic,
and Bryan Ford. Baxos: Backing off for Robust and Efficient Consensus. 2022. D O I: 10.48550/
ARXIV.2204.10934. U R L: https://arxiv.org/abs/2204.10934.

[4] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. “Hot-
stuff: Bft consensus with linearity and responsiveness”. In: Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing. 2019, pp. 347–356.

[5] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. “Byzantine ordered
consensus without Byzantine oligarchy”. In: 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). 2020, pp. 633–649.

17

https://doi.org/10.48550/ARXIV.2204.10934
https://doi.org/10.48550/ARXIV.2204.10934
https://arxiv.org/abs/2204.10934

	Introduction
	Design
	System Model
	The BFT Baxos Algorithm
	Safety in BFT Baxos
	Safety Proof in BFT Baxos
	Liveness challenges in BFT Baxos
	Generate k randomly
	Increase l monotonically
	Increase ballot number monotonically
	Backoff check mechanism

	Pseudocode for BFT Baxos

	Implementation and Evaluation
	Implementation
	Evaluation
	Experimental Setup
	Experimental Result

	Future Work
	Multi-instance BFT Baxos
	Different random seed strategies in VRF
	Clock synchronization

	Bibliography

